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ABSTRACT

This report describes the preliminary design effort (Subtask B) of a study to
define the most attractive high pressure, oxygen/hydrogen auxiliary propulsion sub-
system (APS) for NASA space shuttle booster and orbiters. The study was performed
for the National Aeronautics and Space Administration, Marshall Space Flight Center
(MSFC), Huntsville, Alabama under Contract No. NAS8-26248.

The study program was divided into two phases. The first, Subtask A, was a
conceptual subsystem definition phase to identify APS concepts best suited to each
of the two baseline shuttle booster and orbiter vehicles. "The second, Subtask B,
(described in this report) was a preliminary design of the selected subsystem to
establish a more in-depth understanding of subsystem design and overation.

The APS selected for all vehicles utilized a turbopump subassembly to provide
the pressure required for subsystem operation. In this concept, hydrogen and oxy-
gen propellants are stored as cryogenic liquids and supplied to the subsystem by
turbopumps and temperature conditioned in reburn heat exchangers. Combustion
products from gas generators are used in turbines to power the turbopumps. Exhaust
gas from the turbines are routed to heat exchangers where additional oxygen is
added and the mixture reburned to provide the energy for propellant conditioning.
Resultant conditioned pfopellants are stored in accumulators until they are required
for APS thruster usage.

The objective of Subtask B was to establish the preliminary design for the
turbopump APS. This report describes the study effort; provides a definition of
subsystem operating and performance characteristics, component and assembly designs,
installation features, weight,and reliability estimates; and evaluates critical

technology.
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1, INTRODUCTION

Development of the NASA space shuttle vehicle system for future manned space
operations requires development of a number of subsystems which are either new or
significant extensions of state~of-the-art technology. Among these is the auxiliary
propulsion subsystem (APS) used for control and maneuvering of the shuttle vehicle
after main engine cut-off. The magnitude of the APS control requirements far exceed
those of previous space vehicles. To provide a high performance APS and, additional-
ly, to take advantage of benefits which can be derived from propellant logistics,
safety, reuse, and performance, a gaseous hydrogen/oxygen auxiliary propulsion
subsystem was identified as the most desirable type of subsystem.

There are two basic means of implementing such an APS:

(1) a high pressure APS, in which propellants are stored at, or conditioned

to, the most desirable thruster operating pressures

(2) a low pressure APS, in which propellants are supplied to the control

thrusters from the main engine propellant tanks at normal ullage pressure.
Within these broad categories many APS options are available. Typically, storage
of propellants, conditioning assembly design, integration with other propulsion
subsystems, and the exact mode of APS mission usage can be implemented in various
ways.

Each basic APS category and its alternate implementation scheme offers differ-
ent advantages and suffers different disadvantages in terms of subsystem performance
and the requisite technology developments., Thus, selection of the APS for the
shuttle and definition of the advanced technology necessary for APS development
required in-depth studies to select the type of APS best suited to shuttle require-
ments and to identify the advanced technology effort required for development of
the APS.

To fulfill this need, NASA contracted for APS definition studies of both high
and low pressure APS. These studies were divided into two phases. The first
phase, Subtask A, was a conceptual subsystem definition to provide NASA with suf-
ficient data for selection of the best means of APS implementation in the high and
low pressure categories. The second phase, Subtask B, was a preliminary design of
the particular concept(s) selected in each basic APS category. The high pressure

APS study was conducted by McDonnell Douglas Astronautics Company - East under

1-1
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Contract No. NAS8-26248. The Aerojet Liquid Rocket Company, under subcontract to
MDAC-East, provided analyses and design support necessary to define the active com-
ponents for APS evaluation. NASA technical direction for this effort was provided
by the NASA Marshall Space Flight Center (MSFC) at Huntsville, Alabama, through the
office of Mr. John McCarty, Deputy Chief, Propulsion and Power Branch of the

Astronautics Laboratory.
The problem addressed in the high pressure APS study Subtask A was to provide

sufficient comparative data on the various APS concepts to allow selection of the
best high pressure approach for Subtask B preliminary design. This required con-
sideration of a large number of high pressure APS concepts. For this phase of
study, the predominant concern was the relative merit of VariousbAPS concepts,
rather than their absolute performance levels. Component and assembly optimizations,
within a given subsystem concept, were limited to those areas which could potential-
ly impact subsystem selection. Thus, final data resulting from this study phase
could not be considered as representative of a refined absolute performance level
for any particular subsystem. That aspect of design was properly the result of the
second phase of study, which provided component optimizations for the selected APS
concept. Results of first phase (conceptual subsystem definition) of the high

pressure APS study are summarized in Reference (a).

Subtask B was initiated using APS concepts defined in Subtask A. Vehicles
considered for the Subtask B APS installation were Orbiter B, Orbiter C, and the
Booster defined in Reference (b). Studies were performed to determine thruster
arrangement and thrust level which would best meet maneuvering requirements and

still provide the minimum weight configuration. Other criteria were accounted for,

such as no heat shield”penetration by thrusters during reentry, and a common thruster
for orbiters and booster. In-depth component and assembly trade studies and design
analyses were conducted to define the recommended baseline APS. The final baseline
APS installation and preliminary design including component definition was then
accomplished. Reference (c), Space Shuttle High Pressure APS Definition Study
Handbook, defines in detail the preliminary design, operating performance, and weight
sensitivities for the selected APS. .

This repoft presents results of Subtask B preliminary design effort. The body
of the report presents a brief overview of the various studies and their results.
Included are a summary of the study approach and APS requirements, a description of
the APS, a discussion of the alternatives considered for the different APS assem-
blies, and an APS design summary. This is followed by appendices which provide

additional detail for the various studies and analyses leading to the selected design.
1-2
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2. STUDY APPROACH

The overall study approach, as described previously, was conducted in two phases,
defined as Subtask A and Subtask B. Reference (d) provides a detailed program plan
for the complete study, and defines the objective of each task. During Subtask A,

a preliminary screening of the many APS concepts was conducted. APS concepts re-
sulting from this screening were then evaluated in more detail to establish concepts
best suited to each shuttle configuration. A turbopump APS was selected as the

best approach for both orbiters and the booster. The Subtask B portion of the study
involved a preliminary design of the turbopump APS concept, conducted to define (in
detail) component and assembly design, operation and performance, and resulting

APS performance. Figure 2.1 presents a task flow chart illustrating effort during
this study phase. The basic approach taken was to:

(1) update the baseline APS design points to reflect revisions in the vehicle

requirements

(2) conduct component and assembly studies, using the updated APS design

points and component requirements

(3) refine the APS design, and select baseline component designs best suited

to the APS.
Results of these analyses and of the component studies were then used to revise and
update APS schematics and baseline design point. The resulting APS design was then
evaluated to define performance, operating characteristics, and the advanced tech-

anlogy required for subsystem development.

2-1
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3. APS REQUIREMENTS

The APS thrust level and total impulse were defined during Subtask A for the
vehicle configurations, design characteristics, and acceleration requirements de-
fined in the Space Shuttle Vehicle Description and Requirements Document (Reference
(e)). However, subsequent to Subtask A, revisions were made to this document, Re-
ference (b), requiring an updating of the APS requirements for Subtask B. These
revisions included changes to vehicle configuration, increased acceleration
requirements, and refined mission timelines. Three vehicle configurations, two
orbiters and one booster, were evaluated during Subtask B. These vehicles are
illustrated in Figures 3~1 through 3-3. The vehicle attitude control and transla-

tion maneuver requirements are shown in Figures 3-4 and 3-5, respectiyely.

A detailed evaluation of the APS thrust level, total impulse, and number of
thrusters for the Subtask B study phase was made. Many options of thrust level,
number of thrusters, and thruster locations are available within the constraints
imposed by the vehicle acceleration requirements and vehicle configuration. The
analysis described in Appendix A of this report resulted in the thruster locations
shown in Figures 3-1 through 3-3, and the thrust levels and number of thrusters are
summarized in Figure 3-6. As shown, a common thrust level of 1850 1b was selected
for both orbiters and the booster.

In Subtask A, three levels of APS control and +X maneuvering capability were
investigated for the orbiters. These were:

(1)' APS designed to perform all orbiter attitude control and +X maneuvering

functions after main engine shutdown

(2) APS designed to perform attitude control functions, but limited in +X

maneuver capability to velocity changes of < 50 ft/sec

(3) APS designed to perform attitude control functions, but limited in X

maneuver capability to velocity changes of < 10 ft/sec
In the last two cases, a separate orbit maneuvering subsystem (OMS) would be
required for major +X translation maneuvers with velocity changes greater than
those provided by the APS. For the Subtask B, a single APS operational approach,
in which the APS performs all attitude control and maneuver functidns, was selected
by NASA. This eliminated the requirement for a separate OMS to perform major +X
translation maneuvers. Two different mission timelines for the Space Station/Base

Logistics Mission were considered for Subtask B:

3-1
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HIGH PRESSURE APS

SUBTASK B
THRUST NUMBER OF TOTAL IMPULSE
LEVEL THRUSTERS (105 LB SEC)
BOOSTER | ORBITER
ORBITER B 1850 24 12.666*
BOOSTER 1850 18 0.860
ORBITER C 1850 33 12.766*
* 100 LB~SEC MINIMUM IMPULSE BIT
17TH ORBIT RENDEZVOUS
REQUIREMENTS SUMMARY
Subtask B
FIGURE 3-6
(1) an early, or third, orbit rendezvous, and

(2)

a late, or seventeenth, orbit rendezvous.

APS total impulse requirements for these baseline missions are shown in Figure 3-7

for both orbiters and the booster.

3-6

ORBITER B ORBITER C BOOSTER
MIB* 3RD ORBIT 17TH ORBIT 3RD ORBIT 17TH ORBIT
RENDEZVOUS RENDEZVOUS RENDEZVOUS RENDEZVOUS
ATTITUDE 50 60,800 66,900 99,300 109,200 o
CONTROL 100 243,200 267,600 397,200 436,800
150 547,200 602,100 893,700 982,800
ATTITUDE 843,000 861,000 702,400 720,700 864,000
MANEUVERING
TRANSLATION 11,229,000 11,537,000 11,290,000 11,608,000 ok
MANEUVERS
TOTAL 50 12,124,000 12,665,000 12,092,000 12,438,000 864,000
100 12,306,000 12,666,000 12,390,000 12,766,000
150 12,610,000 13,000,000 12,386,000 13,312,000
*MIB~MINIMUM IMPULSE BIT PER THRUSTER~ LBF SEC/ THRUSTER
**NEGLIGIBLE
**NO REQUIREMENT
IMPULSE TOTALS
FIGURE 3-7
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4. APS DESCRIPTION

As noted, Subtask A results indicated the turbopump concept was the preferred
ibsystem for the booster and orbiters studied. A simplified schematic of the
rdrogen side of the resulting subsystem is presented in Figure 4-1. The schematic
f the oxygen side is similar. The components and assemblies making up the turbo-
mp concept were reevaluated in detail during this study phase to reflect updated
:quirements and to ensure that the preliminary design was best suited to the APS.
1ese detailed studies and trade offs resulted in new design concepts for the APS
»nditioner and thruster assemblies and refined designs for other components and
ssemblies. The propellant is stored as a liquid, conditioned to the required

ressure and temperature by the gas generator, turbopump, and heat exchanger
ssemblies and stored in an accumulator. The thruster assemblies operate from the

:cumulator as stored gas bipropellant rocket engines operating at regulated inlet

ressure conditions.

Figure 4-2 presents a simplified schematic of the final hydrogen side turbopump
S as defined by this study. The schematic for the oxygen side is similar. The
bsystem consists of four separate assemblies:

(1) thruster assemblies

(2) accumulators and feedline assembly

(3) conditioning assembly

(4) propellant storage assembly,
The accumulators decouple the thruster assemblies from the conditioning assem-

lies and provide sufficient gas storage capability to limit the number of condi-
ioner assembly starts to a reasonable number.

The conditioner assemblies are sized to provide a flow rate which is equivalent
y the flow rate of the maximum number of thruster that can operate at any given
ime. These assemblies consist of a single 2000°R bipropellant gas generator, a
ynventional turbopump, and a reburn heat exchanger. All gas generator products
‘e first passed through the turbopump, where the energy reqﬁired to raise the
tquid propellant pressure and provide flow rate required is extracted. The
iel-rich gasses are then directed to the heat exchanger where supplemental

¢ygen is added to provide the energy required to convert the liquid propellant to

4-1
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.' 2
02  Hy 35000R é—@-——/\—

FILM COOLED THRUSTER

SUBTASK A SELECTED CONFIGURATION TURBOPUMP
WITH 35000R GAS GENERATOR/HEAT EXCHANGER
FIGURE 4-1

— VENT

37500R H, t
41509R 0 60,

2000°R

REGENERATIVE/FILM COOLED THRUSTER

FINAL APS CONFIGURATION
TURBOPUMP WITH REBURN HEAT EXCHANGER FIGURE 4-2
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gas at the desired temperature. The exhaust products are discharged from the vehi-
cle either through opposing nozzles to eliminate disturbance forces or, if a +X

axis maneuver is in process, through an aft directed convergent-divergent nozzle
to provide useful +X impulse.

The propellant tankage assembly operates similarly to conventional storable
propellant tankage. Pressure within the tank is maintained by mechanical regula-
tion of the helium pressure supply. Propellants are maintained in a liquid stage
by a combination of high performance insulation and propellant vaporization. Nor-

mal on-orbit heating is absorbed by a coolant loop in which propellant is extracted
from the tank, and passed over the outer shell, where the heat leak is taken up by

the propellant heat of vaporization. Propellants are maintained at the tank out-
let by a surface tension screen device. This device provides positive propellant

positioning in zero g or during low—g operation in any vehicle direction.

The following paragraphs provide a summary of the alternate design approaches
considered for each APS assembly, a description of the designs selected,
and the rationale for selection.

4,1 APS Thruster Assemblies ~ The APS uses gaseous hydrogen-oxygen thrusters

to provide the impulse necessary for vehicle control and maneuver functions. In
Subtask A a film cooled thruster assembly was used for the APS concept trade
studies. During Subtask B, a detailed analysis of thruster design and performance
including an evaluation of alternate cooling methods was conducted to ensure
minimum weight APS design. This evaluation resulted in a selection of thruster
design using regenerative cooling in conjunction with film cooling, providing an
improvement in thruster specific impulse while satisfying cycle life requirements.
A sketch of the selected thruster design is shown in Figure 4-3 and Appendix D-7
discusses the factors leading to design selection in more detail.

The primary components of the APS thruster are the propellant injector, com-
bustion chamber, igniter, and propellant controls. The injector is an impinging
coaxial design which is a variation of the more comnventional coaxial element. In
this design, hydrogen is injected normal to the axially directed oxidizer stream.
Hydrogen propellant regeneratively cools the combustion chamber and the nozzle to
the 11:1 area ratio, flowing forward in a single pass concept through channels
toward the injector. A film cooled nozzle skirt is attached at the 11:1 area ratio.
The igniter subassembly consists of a separate high-response bipropellant valve, a
cooled ignition chamber, and a spark plug. Primary propellant flow to the thruster

is controlled by a linked, parallel poppet valve actuated by gaseous hydrogen from

4-3
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the propellant system. Appendix D-7 provides a more detailed description of a
thruster design and provides thruster performance data.

In conjunction with selection of the thruster design, a separate study was
performed to explore the advantage of tailoring thruster designs to their vehicle’
functions (i.e., translation or attitude control). Since about 90% of the APS
total impulse requirement is expended in +X translation maneuvers, it was potential~
ly advantageous to use thrusters individually designed to provide maximum specific
impulse for the +X translation functions. Investigated were:

(1) thrusters using gaseous oxygen and hydrogen, but with increased nozzle

expansion ratio

(2) thrusters with increased expansion ratio, designed to operate with liquid

hydrogen and gaseous oxygen

(3) thrusters with increased expansion ratio, designed to operate with liquid

hydrogen and liquid oxygen.
The above options represent a continuous improvement in subsystem specific impulse
at the expense of increased development effort, because each design is progressively
a greater design deviation from a common attitude control thruster.

Based on comparison of APS weights and complexity using these alternates it
was concluded that while the concepts using liquid hydrogen could provide weight
savings, their advantage was offset by the need for development of two different
thruster assemblies, i.e., both gas and liquid engines. However, the first option
represented only a minimal change to the basic design as it used gaseous propel-
lants; no changes were required in the combustion/cooling portions of the thruster
assembly. The weight reduction that could be realized by this simple change in
nozzle skirt size were considered to outweigh the small penalties associated with
thruster commonality deviation and it was selected for incorporation in the design.
Based on overall APS weight exchanges, expansion ratios of 120:1 and 60:1 were
selected for the translation and attitude control thrusters, respectively. Appen-
dix D-8 provides details on the design assumptions in this analysis, showing weight
changes which result from alternate design approaches.

4,2 Accumulators and Feedline Assembly - The APS requires that conditioned

propellant be available at all times for reliable and responsive thruster opera-
tion. This is accomplished by the use of accumulators, which store gaseous hydro-
gen and oxygen propellants, and the feedline assembly, which distributes the pro-
pellants to the thrusters.

The accumulators are the most significant weight element in this assembly.

4-5
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They consist of spherical pressure vessels which operate in a blowdown pressure
mode between a maximum and minimum pressure level and are recharged periodically
during the mission by the conditioner assembly. Accumulators are sized to provide
sufficient total impulse between the lower switch pressure level and minimum opera-
ting pressure to deliver maximum thrust over the time period required for condi-~
tioner start up. Accumulator maximum pressure limit is established by consideration
of the number of recharge cycles desired in a mission. The higher the pressure,
the fewer the cycles. These requirements combine to define a combination of accumu-
lator design pressure levels and an accumulator volume which result in a minimum
APS weight. Appendix D-6 provides a detailed description of the analyses used to
define accumulator design, and shows that for the APS requirements and the condi-
tioner assembly start characteristics, a minimum APS weight is provided at an over-
all accumulator pressure ratio of 2.26:1 (maximum to minimum), with accumulator
volumes of 29 and 12 ft3 for hydrogen and oxygen, respectively.

Feedline assembly configurations used were representative of actual installa-
tions; therefore, their weight and influence on APS design were realistically
assessed. Line diameters were based on tradeoffs between weight reductions for
smaller lines and weight penalties in the accumulators and conditioners with in-
creased line pressure loss. Line lengths and routing were determined from instal-
lation layout studies described in Appendix C. Another factor of significance in
feedline definition is the amount of propellant heating that occurs in the lines
between accumulators and thruster assemblies. Heat transfer into the gaseous pro-
pellant will result in differences in thruster inlet propellant density with atten-
dant thrust and mixture ratio excursions. To minimize these excursions the lines
must be insulated. Two alternate means of insulation were considered:

1) vacuum jacketed lines

2) lines insulated with high performance, multi-layer mylar insulation

protected by a flexible cover.
Comparison of the weight and complexity of these two approaches showed that vacuum-
jacketing would result in high weight penalties and the installation would be quite
complex. For this reason, the flexible jacket approach was selected for feedline
insulation.

4,3 Conditioner Assembly -~ The conditioner concept selected during the Sub-

task A studies used a 3500°R gas generator to provide the energy required for
turbopump operation in series with downstream propellant conditioning heat exchan-
ger. A more detailed analysis of conditioner assembly integration and component
4-6
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requirements for this conditioner during Subtask B showed that the power require-
ments of the hydrogen pump could not be matched to the power capability of the
turbine without significant increases in conditioner bypass flow and/or reductions
in chamber pressure. Both these changes resulted in increased APS weight; there-
fore, to ensure a minimum weight APS several alternate concepts including the above
changes to the Subtask A concept were evaluated. Alternate conditioner concepts
were:

(1) an active propulsive vent with 2000°R gas generator

(2) two heat exchangers which allow turbine flow to be extracted at higher

temperatures midpoint in the conditioning cycle,

(3) a separate 2000°R gas generator to power the turbopump and a reburn heat

exchanger for propellant conditioning

(4) cold turbines which are powered by the conditioned propellant,

In this evaluation, weight increment associated with each concept relative to the
Subtask A baseline was determined and the concepts were assessed to establish rela-
tive technology, simplicity and flexibility considerations. Appendix D-2 provides
both a detailed discussion of the alternate conditioner concepts and the quantita-
tive results used in making this selection. From this evaluatory process, the
reburn heat exchanger was selected.

The revised conditioner concept uses a single 2000°R gas generator in each
conditioner. Exhaust products from this generator are used first to drive the
turbopump, then the turbine exhaust is directed to the heat exchanger, where sup-
plemental oxygen is added to increase heat release and improve overall assembly
performance.

Three approaches to the control of the heat exchanger flow and pressure during
accumulator recharge were evaluated for the revised conditioner concept. The turbo-
pump design conditions depend upon the approach used for conditioner control during
recharge. Control during +X translation operation is described in paragraph 5.0.

The approaches considered were:

(1) a fixed conditioner operating point, in which conditioner flow rate and

pressure were invariant during accumulator recharge

(2) a fixed conditioner flow rate, in which conditioner flow was maintained

constant and turbine power was increased to provide accumulator recharge

(3) a fixed turbine power, in which turbine power was maintained constant

and conditioner flow was allowed to decrease during recharge.

MCDONRNRNELL DOUGILAS ASTRORAUTICS COMPANY = EAST
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Since each control concept affected the conditioner design points and thus
influenced APS weight, the APS was optimized for the three control concepts. Two
constraints to the minimum weight operating point were:

2a to allow sea level

(1) a minimum turbine discharge pressure of 30 1bf/in

testing of the heat exchanger and turbine

(2) a heat exchanger discharge temperature of 800°R minimum to preclude HZO

condensation in the vent assembly.
These constraints were met by varying the amount of supplemental oxygen. Details
of this comparison are presented in Appendix D-2. From this comparison, a control
concept was selected in which the conditioner is designed to operate at constant
turbine power and provides the maximum steady state thruster flow at the minimum
accumulator pressure.

This control concept resulted in the best compromise between control complexity
and APS weight., For the selected control concept APS weight optimized at a chamber
pressure of 500 lbf/inza and overall conditioner mixture ratios were 2,55 and 2,69
for hydrogen and oxygen conditioning, respectively.

The baseline designs for the turbopump, gas generator:and reburn heat exchanger
which are required by the conditioner assembly are presented in the following para-
graphs. . '

4.3.1 Turbopump Subassembly - In the selected conditioner design, the

turbopumps are required to provide maximum flow at minimum accumulator
pressure. Since turbine power is maintained constant during recharge, pump flow

is reduced and speed is increased as accumulator pressure is increased. The

detailed design and performance of the turbopumps are provided in Appendix D-3.

The selected ‘turbopumps use pressure compounded, axial flow furbines,
and centrifugal pumps. The LO, assembly uses a single-stage pump and a two-stage

2 .
turbine, while the LH, assembly uses a two-stage pump and three-stage turbine.

Pump impeller and turiine rotor are mounted on a common shaft, supported by propel-
lent cooled/lubricated bearings. Figure 4~4 and 4-5 present sketches of the
turbopump subassemblies. Turbopump design and performance were established after a
detailed evaluation was performed to compare the éapability of several designs.
Pump and turbine steady state efficiencies were investigated in detail since these
affect the APS bypass flow requirements. An efficiency of 40 percent at steady-

state operating condition was selected as a design value for both pumps. This

4-8
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efficiency is less than the maximum available, but provides a design margin, and
limits heat exchanger flow excursion during recharge.

The turbopump assemblies are actively cooled by hydrogen tank vent gas which
is passed through a tubular heat exchanger mounted on the pump enclosufe. In
addition, a heat short from the turbine to the structure provides pump isolation.

4,3.2 Heat Exchanger Subassembly - The APS uses reburn heat exchanger assem-

blies to condition the propellant to the temperatures required. The products from
a 2000°R gas generator are first used to drive the turbopump subassgmbly and are
then directed to the APS heat exchangers where supplemental oxygen is added to

the fuel rich turbine exhaust and reburned to supply the energy necessary for
propellant conditioning. Three types of heat exchanger concepts were considered
for this function. These varied in the number of reburn cycles used and the man-
ner of G02/mixture ignition. The concepts were: .

(1) multistaged oxygen injection into gas mixtures below the auto-ignition

temperature '

(2) multistage oxygen injection into gas mixtures above the auto-ignition

temperature

(3) single point oxygen adhition and ignition.

The selected design uses single point oxygen addition. This concept is based on
application of injector plate fabrication technology developed for staged combus-
tion cycles. The heat exchangers reburn the fuel-rich turbine exhaust products,
for the oxygen heat exchanger at a mixture ratio of 0.85, establishing a hot side
temperature of approximately 4150°R . The heat exchanger must operate in this
temperature enviromment and have a high cycle life with large cold to hot side
temperature gradients. Appendix D-4 presents a comparison of alternate approaches
and provides a detailed description of the operation and performance of the
selected design.

Heat exchanger design is illustrated in Figure 4-6. All propellant to be
conditioned enters the heat exchanger in the base. The core consists éf a series
of liquid propellant platelet assemblies, each separated by a hot gas flow passage.
Platelet construction techniques provide controlled heat transfer coefficients for
hot gas and cold propellant sides. The exploded‘view of the liquid propellant
platelet assembly shows that the liquid propellant enters the center of the plate-
let, is distributed across its width, directed up its length where the flow is
split and directed back down the platelet stack. Heat exchange with the hot gas

4-10
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occurs on the downpass because the closure plate for the downpass channels is

also the wall of a gas generator segment. At the bottom of the downpass, the

conditioned propellant discharging from each of the platelets is gathered in a
manifold assembly and directed to the accumulator.

The heat exchanger shell is regenatively cooled and is actually one half of a
main heat exchanger platelet. The liquid propellant flows up the outside passage
of the shell and down the inside passage where it is conditiomed. It is collected
with the conditioned propellant from the main platelets.

The gas generator portion of the reburn heat exchanger is shown in Figure 4-6.
The turbine exhaust gas is mixed with oxygen along the width of each gas

generator panel. .

A catalytic igniter in the manifold is used as the igniter source for the
turbine exhaust gas/GO2 mixture. During accumulator recharge, oxygen addition
is controlled to maintain a constant propellant temperature at the heat

exchanger outlet.

4.,3.3 Gas Generator Subassembly - Gas generators are required to provide

power for turbopump operation and energy to the reburn heat exchanger assembly.
These units operate from gaseous hydrogen/oxygen propellants and provide
throttling capability to limit operating temperature and to maintain accumulator
pressure in the presence of varying APS flow demands. The design selected is
shown in Figure 4-7. -This concept employs an electrical spark igniter. The
assembly operates at 2000°R combustion temperature and 500 lbf/inza operating
pressure. Linked bipropellant valves with piloted pneumatic actuators are used.
The linked valves provide fast response, added assurance of proper.propellant
sequencing and minimize potential mixture ratio excursions due to valve
inaccuracies. Calibrated orifices, a bypass circuit and separately activated
throttling valves are used to supply different power levels to the turbine upon
demand. Paragraph 5.0 provides a discussion of gas generator flow control.
Appendix D-5 provides more detail on gas generator design and describes
performance.

4.4 Propellant Storage Assembly - The propellant storage assembly maintains

the cryogenic propellants in their liquid state and positions them for delivery
to the turbopumps. Three primary subassemblies are required:
(1) a propellant acquisition subassembly

(2) a thermal protection subassembly
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(3) a pressurization subassembly.
For these, several alternate approaches were available tﬁat could potentially
satisfy APS requirements. Appendix D-1 provides a summary of requirements for
each subassembly, compares the alternates and defines the designs selected.
Appendix D-1 results are provided in the following paragraphs.

4.4.1 Propellant Acquisition Subassembly - A propellant acquisition device is

required to ensure liquid outflow during low-g orbital phases of the mission.
During these mission phases, vehicle acceleration will tend to randomly orient the
propellant within the tank, thereby potentially uncovering the tank outlet. Some
device is therefore necessary to guarantee that liquid will be retained at the out-
let and to provide a flow path for communication between the liquid mass and the
outlet. Of several concepts considered for this function, surface tension screen
devices were the most attractive, They are passive with no moving parts, thus
providing high reliability and multicycle reuse capability. Three basic screen
retention concepts were evaluated:

(1) a wall orientated device

(2) a start basket

(3) a hybrid combining the above two devices.

A wall orientated device was selected.

This propellant acquisition device, shown in Figure 4-8, consists of screen
channels located aroqnd the tank circumference, and a single enclosed collector
manifold, which connects each channel to an outlet sump. The acquisition device
will selectively pass liquid to the feed system so long as there is contact with a
liquid mass. The wall oriented nature of the device ensures that contact will be
made. Screen mesh and flow passage dimmensions were selected so that the pressure
drop across the screen vapor/liquid interface never exceeds the screen bubble point
prior to reentry. During reentry, deceleration forces will result in draining of
the channels; however, these same forces will result in propellant orientation at
the tank outlet.

4.4.2 Thermal Protection Subassembly - Satisfactory turbopump operation

requires that the propellants be maintained as gas—free, subcooled liquids to avoid
vapor ingestion and assure a net positive suction.pressure at the pump inlet. To
avoid excessive propellant boiloff and to prevent vaporization within the surface
tension screens an efficient thermal protection subassembly must be provided. The
thermal protection assembly uses high performance, multilayer, mylar insulation to
reduce vaporization/boiloff loss. Also, since insulation cannot completely
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eliminate heat leak into the tank, a heat exchanger assembly must be provided to

preclude bulk liquid heating. This subassembly is shown in Figure 4-9.
Insulation protection alternates investigated were:

(1) vacuum jacketed dewars using a structural outer shell
(2) nonvacuum jacketed tanks with flexible or semirigid covers to protect
the insulation.

The nonvacuum jacketed approach required noncondensable gas purging in the atmo-
sphere to protect the insulation from water condensation damage. The dewar approach
was the simplest, but the weight penalties it incurred were not considered to be
justifiable and an approach requiring purge gas was selected. This approach uses
a fiberglass outer shell to cover the mylar insulation. Both hydrogen and oxygen
tanks use a nitrogen gas purge to prevent cryopumping during ground holds, but
since nitrogen would condense at liquid hydrogen temperature, the hydrogen tank
requires a layer of foam insulation to limit mylar insulation temperature.
During entry, fiberglass jackets are pressurized with helium.

Three alternate heat exchangers were considered:

(1) a tubular heat exchanger mounted directly to the tank wall

(2) a tubular heat exchanger attached to a thin metal radiation shroud

displaced from the tank wall.

(3) a compact heat exchanger mounted inside the tank.
The second of these options was selected. The first was considered inadequate,
since it would allow temperature gradients within the tank unless circulation fans
were provided. The third offered little weight advantage, and also required
propellant circulation. Figure 4-10 illustrates the selected thermal protection
schematic. In this approach, hydrogen is continuously circulated through cooling
tubes to intercept residual heat leak through the insulation and heat short paths.
Liquid hydrogen is extracted from the hydrogen tank, throttled to redﬁce its
temperature, and then directed to the tank cooling shroud, where it absorbs heat

through vaporization. The hydrogen is then used to cool the hydrogen turbopump,

oxygen tank, and oxygen turbopump.

4.4.3 Pressurization Subassembly - Two candidate pressurization types were
evaluated: ' '

(1) autogenous

(2) cold helium with submerged injection.

Appendix D-1 discusses these approaches and their weight tradeoffs. The selected
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concept for the APS was cold helium using submerged helium injection, resulting in
a small weight penalty which was outweighed by inherent operational simplicity

and state-of-the—-art technology base.
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5. APS OPERATION AND CONTROL

In the selected high pressure APS, propellants are stored as liquids at low
pressure, and raised to subsystem operating pressure by turbine driven pumps. Heat
exchangers are employed which use hot combustion gas to condition propellants to
the temperatures required for thruster operation. To avoid excessive cycling of
the conditioning assembly, accumulators are provided to decouple the thrusters
from the conditioners. Accumulator pressure is maintained by the conditiomers,
which resupply the accumulators when accumulator pressure drops below a switching
pressure level. Of principal concern to this study phase is conditioner assembly
control during +X translation operation.

The conditioner assembly control concept was established to satisfy three
independent design criteria:

(1) rapid start transients. (The conditioner response time is a primary
factor in accumulator sizing as it is directly related to accumulator
volume. Slow conditioner response characteristics result in excessive
accumulator weight penalties, hence high turbine power for starting was
desirable.)

(2) minimum operating power. (The amount of gas generator flow required for
steady state conditioner operation directly affects the effective
specific impulse of the APS. Hence it was desirable to operate with
minimum turbine power under normal conditions.)

(3) conditioner flow variability. (During steady state +X translation
maneuvers an undefined and variable amount of propellant will be required
for attitude control. Conditioners could be designed with excess flow
capability but this would require additional life capability because the
conditioners would cycle on-off during steady state operation. Therefore,
it was desirable to control conditioner flow such that the accumulators
would not recharge during +X maneuvers.)

The control concept selected to satisfy these criteria provides a maximum gas
generator flow for turbopump starting and adjusts flow according to accumulator
pressure during steady state operation. This is accomplished with the gas generator
valves which in effect are two separate valves. One is a fast acting, pneumatically
controlled on-off valve, while the other is a slower, electrically controlled,

vernier throttle valve. The vernier is located downstream of the primary valve

5-1
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and provides up to 20 percent flow reduction according to accumulator pressure.
These vernier valves also control gas generator mixture ratio by sensing combustion
temperature and throttling gas generator oxygen flow to maintain proper mixture
ratio (and thus turbine temperature).

APS control is illustrated in Figure 5-1. When the accumulator is fully
charged, conditions are at point (A) and there is no conditioner flow at these
conditions the primary gas generator valves are closed and the throttle valves are
full open. With thruster usage, conditioner pressure will decay until the switching
pressure is reached. The primary gas generator valves and the pump suction valves
will be commanded open. Generator flow and turbine power will be a maximum (point
D) and turbine spin-up is initiated. Opening the valve controlling oxygen to the
heat exchanger is delayed until 50 percent of maximum turbine speed has been
reached. '

During the start transient, accumulator pressure will continue to decay and
gas generator flow is modulated with the vernier throttle valves to control turbine
power. When APS flow demands are only those corresponding to +X thruster operation,
flow is controlled to provide minimum turbine power, and, thus, bypass flow at
point 1. However, the conditioner must also provide the capability for attitude
control thrust demands during +X thruster operation. This is accomplished by
increasing generator flow (turbine power) along path 1-2 as pressure decays with
increased flow demands. A resultant normal operating point (3) with attitude control
demands is shown between points 1 and 2. The accumulators recharge to maximum

pressure along path 1-4.
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6. APS DESIGN AND PERFORMANCE SUMMARY

Subtask B effort resulted in definition of design, performance and operational
characteristics of the APS selected for the space shuttle high and low cross range
orbiters and the booster.

APS designs were established to satisfy the vehicle control requirements of
Reference (b). Figure 3-6 summarized the number of thrusters, thrust level and
total impulse required for each vehicle, while Appendix A provides study results
that led to these requirements. Thruster locations were illustrated in Figures
3-1, 3-2, and 3-3. These locations were established to satisfy the criteria of
minimum weight, avoidance of heat shield penetration whenever possible, and use of
common thrust levels between vehicles. The turbopump APS defined for the three
vehicles; Orbfter B, Orbiter C and the Booster, are basically the same. The condi-
tioning assemblies are identical for the three vehicles in configuration and
operation. Minor differences result from different tank sizes and locations; line
and thruster locations and vent arrangements. The following subsystem description
will be addressed to Orbiter B, and except for the differences noted, also applies
to Orbiter C and the Booster. The referenced report appendices provide data for all
vehicles. The APS schematic for Orbiter B is shown in Figure 6-1 . and defines the
components required to achieve the shuttle reliability criteria. Schematic symbols
are defined in Figure 6-la. Reliability criteria and detail failure mode analyses
used to establish schematics are defined in Appendix H.

Installations of the APS within the vehicles are shown in Appendix C. Component
locations were defined based on the following criteria:

(1) space shuttle requirements (Reference (b))

(2) non-interference with other shuttle components

(3) accessibility for maintenance and inspection.

Subsystem design point summaries and weights are shown in Figure 6-2. These
design points were developed by analyses to define APS weight sensitivity to each
of the various design parameters. Appendix F summarizes the techniques applied and
Figure 6-3 provides an exemplory set of weight sensitivities for Orbiter B, showing
selected design points. Design points shown are for weight optimized subsystems.
Component weight breakdown for these design points, and significant APS volume
items, are shown in Figures 6-4. Subsystem pressure and temperature balances are

also defined, along with APS pump component requirements in Figure 6-5.
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SUBTASK B
DESIGN VARIABLES ORBITERB | ORBITERC BOOSTER
THRUSTER MIXTURE RATIO 4 4 4
EXPANSION RATIO 60/120+ 60/120* 40
CHAMBER PRESSURE (LBF/IN.2) 500 500 500
LINE PRESSURE DROP LBF/IN.2 40 40 40
PROPELLANT
TEMPERATURE (°R) ~ H, 3 37 3
0, 162 162 162
THRUSTER INLET PROPELLANT
MINIMUM TEMPERATURE (°R) - H, 200 200 200
0, 350 350 350
ACCUMULATOR PRESSURE
RATIO — MAX/SWITCH - Hy/0, 2 2 2
SWITCH/MIN - Hy/0, 1.135/1.13 1.13/1.125 1.24
PROPELLANT TANK PRESSURE
LBF/IN.2A- H, 25 25 25
0, " 30 30 35
THRUSTER SPECIFIC
IMPULSE — SEC 446.9/455.2* 446.9/455.2* 444.9
SYSTEM SPECIFIC
IMPULSE — SEC 416.0/423.7* | 416.0/423.7* 410.8
SYSTEM MIXTURE RATIO 3.87 3.87 3.87
WEIGHT 35,879 37,070 5,310
*ATTITUDE CONTROL/TRANSLATION
TURBOPUMP APS DESIGN POINTS AND WEIGHTS
FIGURE 6-2
6-4
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WEIGHT - LB VOLUME - FT3
SUBSYSTEM ELEMENTS
H | 0 Hy | 0

PROPELLANT AND COMPONENTS _
TOTAL PROPELLANT 6334 | 23,552
PROPELLANT TANKAGE 1036 a7 1449 | 332
PRESSURANT AND TANKAGE 450 79
INSULATION 248 50

CONDITIONING ASSEMBLY
HEAT EXCHANGERS (3) 255 297
TURBOPUMPS (3) 76 124
GAS GENERATORS (3) 37

FEED ASSEMBLY
ACCUMULATORS (1) 679 321 29 | 12
LINES : 146 152
REGULATORS (6) % 29
VALVES (THRUSTER ISOLATION(2)| 105 90

AND MANIFOLD) o

THRUSTER (18/6)*

PROPULSIVE VENT AND LINES 275 184

TOTAL SUBSYSTEM 35,879 182

* ATTITUDE,/TRANSLATION ‘
APS COMPONENT WEIGHT BREAKDOWN
Orhiter B
6-6
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Parametric analyses were conducted to define the performance characteristics
of the APS under simulated mission operation. These analyses included investiga-
tion of the impact of variances in propellant conditioning temperatures and
pressure regulator performance. Appendix E provides a complete summary of these
results and Figures 6-6 and 6~7 illustrate the operation 6f the subsystem during
nominal mission, i.e., with all components and assemblies operating at their
design values.

The results shown in Figure 6-6 and 6-7 are based on the lines being completely
vented prior to separation from the station. Results presented in Appendix E
show that this is necessary to avold large mixture ratio excursions. With venting

APS performance variations during the mission will be satisfactory.
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7. CONCLUSIONS

In Subtask B, a preliminary design of the turbopump APS was completed. This
study provided a detailed definition of component and assembly design, operation,
and performance and the resulting APS performance. The preceding sections and the
appendices of this report provide the results of the study.

An assessment of assembly and component technology requirements was a primary
goal of this study. In terms of thrust level for attitude control total impulse
and reuse capability, shuttle requirements are far beyond those for any previous
control propulsion subsystem. Therefore, no APS components capable of satisfying
these requirements exist today. The preliminary turbopump APS design described
in this report is a realistic configuration and can provide the performance and
operational requirements. None of the components defined are currently available
in their correct size, however, many of the component types are well characterized.
Funded technology development programs are currently underway for thrusters,
valves, ignition, and thrust chamber cooling. A detailed subassembly and compo-
nent technology critique is discussed in Appendix G. A summary of that critique

is shown in Figure 7-1.
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TECHNOLOGY CONCERN

ALTERNATIVE APPROACH

IMPACT OF CHANGE

« TURBOPUMP COOLING/RESPONSE

« INCREASED COOLANT FLOW

« REDUCED RESPONSE REQUIRE- N

MENT

« 40 LB INCREASE FOR TWICE DESIGN
COOLANT FLOW

« 300 LB INCREASE FOR FACTOR OF
FOUR IN EQUIVALENT START TIME

« THRUSTER ASSEMBLY PER-
FORMANCE

« REDUCTION IN PERFORMANCE RE-

QUIREMENTS

« INCREASED APS WEIGHT, APPROXI-
MATELY 100 LB PER SECOND Isp
REDUCTION

« THRUSTER ASSEMBLY LIFE
CAPABILITY

« INCREASED COOLANT FLOW )

« PERIODIC REPLACEMENT

o INCREASED APS WEIGHT, APPROXI-
MATELY 300 LB FOR FACTOROF 2
ERROR IN CYCLE CAPABILITY PRE-
DICTION

» INCREASED MAINTENANCE/TURN
AROUND TIME

« PRESSURE VESSEL CYCLE LIFE
CAPABILITY

« INCREASED DESIGN MARGIN

« INCREASED APS WEIGHT, ABPROXI-
MATELY 500 LB FOR 50% INCREASE IN
SAFETY FACTORS

« CONTROL COMPONENT LIFE » PERIODIC REPLACEMENT o INCREASED MAINTENANCE/TURN
CAPABILITY VALVES, IGNITERS, ' AROUND TIME
REGULATORS
» PROPELLANT ACQUISITION » USE OF MULTIPLE SMALL o INCREASED WEIGHT (APPROXIMATELY
ASSEMBLY DESIGN AND REFILLABLE TANKS 400 L8), INCREASED DESIGN AND CON-
VERIFICATION TROL COMPLEXITY AND REDUCED

APS FLEXIBILITY

* HIGH TEMPERATURE

o SERIES-STAGED COMBUSTION

« INCREASED OPERATIONAL AND CON-

REBURN HEAT HEAT EXCHANGERS TO LIMIT TROL COMPLEXITY WITH MULTIPLE
EXCHANGER DESIGN MATERIAL TEMPERATURE ~ OXYGEN INJECTION (IGNITION)
« CONVENTIONAL-MODERATE « INCREASED APS WEIGHT,
TEMPERATURE HEAT - APPROXIMATEL Y 1800 LB
EXCHANGERS (2000°R) « INCREASED APS WEIGHT,
« NO REBURN HEAT EXCHANGER APPROX IMATELY 2200 LB
« HIGH PERFORMANCE
INSULATION REUSABILITY
~ PROPELLANT TANKS « VACUUM JACKETED DEWARS « INCREASED APS WEIGHT,
APPROXIMAT ELY 650 LB
- = DISTRIBUTION LINES « VACUUM JACKETED LINES « MAJOR INCREASES IN INSTALLATION/

DESIGN COMPLEXITY, INCREASED APS
WEIGHT, APPROXIMATELY 400 LB

« TURBOPUNP LIFE
CAPABILITY

« REDUCE OPERATING
REQUIREMENTS

o PERIODIC REPLACEMENT

« INCREASED APS WEIGHT, APPROXI-
MATELY 700 LB FOR FACTOR OF 2
REDUCTION IN CYCLE CAPABILITY
PREDICTION

« INCREASED MAINTENANCE/TURN
AROUND TIME

CRITIQUE OF HIGH PRESSURE APS TECHNOLOGY

FIGURE 7-1
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(b)

(c)

(d)

(e)
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APPENDIX A
APS REQUIREMENTS

Subsequent to Subtask A, the Space Shuttle Vehicle Description and Require-
ments Document, Reference (a), was updated to reflect revised space shuttle vehicle
requirements. Vehicle design characteristics (including weight, center of gravity
location, and moments of inertia) and the acceleration requirements (including
reentry angular acceleration and on-orbit translation requirements) were revised.
In addition, the mission timeline was updated, thereby affecting APS total impulse
requirements.

Vehicles defined for Subtask B study were:

(1) Orbiter B, McDonnell Douglas design low cross range orbiter

(2) Orbiter C, McDonnell Douglas high cross range orbiter

(e) the McDonnell Douglas canard booster.

A general description of the missions and mission requirements that have
been identified as being of major interest in program planning is shown in
Figure A-1. The shuttle baseline missions are the Space Station/Base Logistics
Missions. These mission timelines are shown in Figure A-2 for an early (3rd
orbit) rendezvous and in Figure A-3 for a late (17th orbit) rendezvous. TFigure A-4
presents the associated booster timeline. The mass characteristics of the orbiters
and booster are shown in Figures A-5 and A-6, respectively. The maximum skin outer
temperatures for the orbiters and booster are shown in Figures A-7, A-8 and A-9.

An in-depth analysis was conducted to update APS requirements for the Phase B
portion of this study. In this analysis, alternate thruster locations and thrust
levels for the new vehicle requirements were evaluated, and results of the analysis
(in conjunction with the revised mission timelines) were used to update APS total
impulse requirements. Vehicle characteristics at the time of injection were used
for this analysis. Results are summarized in Figure A-10, which shows the APS
thrust level and total impulse requirements for each vehicle configuration. The
following sections describe the analysis and data used to arrive at the APS

requirements of Figure A-10.
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24

8
SN

? 16

MULTIAXIS ATTITUDE AV (ft sec)

10f 22 115
7
6.1 3.8
75
0
EVENT 2 ' 3 ‘ 4 l 5 l
EVENT 0.7 0.2 1
DURATION TO 10 | 10
MINUTES 0.8 0.3 5
EVENT
COMPLETION
TIME* EVENT PROPULSION REQUIREMENT DESCRIPTION
i. 0 Staging Separation of booster and orbiter
’ (No APS requirement)
2. 0+ Post Separation  Damping of main engine cutoff and separation
transients.
3. 0.7-0.8 Orientation Maneuver vehicle to reentry attitude.
4. 0.9-1.1 Attitude hold +2° deadband
5. 1.9-6.1 Entry +2° deadband

#Time is refercenced to Event 1 in minutes unless otherwise stated. DBoth
minimum and maximum cumulative times arc shown.

SPACE STATION/BASE LOGISTICS MISSION
TIMELINE — BOOSTER

FIGURE A-4
A-14
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Staging Initiation of Jet

Mass Characteristics (Booster Burnout) Powered Flight

Weight (1b) 474,876 451,219
Center of Gravity X -2010 -2004
Location (in.) Y 0 0
Z 13 14
Moment of Inertia _Ixx 7.017 7.016
(slug — ft? Iyy 53.918 51,25
» 108) Izz 57.013 54, 354
MASS CHARACTERISTICS OIF BOOSTER
FIGURE A-6

A-16
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1600°(L) ,/ ’
{_®s0° s
a~80® -
s00°

800°(L) 800°(L}

NOTES:
1. (L} indicatws meximum
Wmpersture occure
during leunch,

2 AN wrrpecstures in .F,
3 =87 Bru/te? poc.

2240,
2350
2480
i 050 1390° (ZERO DEFLECTION)
XA = Q.10
2700"
2400°
WING LOWER  2180°
2000°
)
3100"

Maximum outer skin temperatures — orbiter B.

FIGURE A~7
A-17
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NOTES:

1. (L) maxirmum sosury
loawesch .

2. AN emperensrss in °F
t 8 Srag Sutd sne.

Maximum outer skin femperatures — orbiter C.

FIGURE A-8
A-18
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SUBTASK B
THRUST NUMBER OF TOTAL IMPULSE**
LEVEL THRUSTERS (105 LB SEC)
BOOSTER | ORBITER
ORBITER B 1850 24 12.666*
BOOSTER 1850 18 0.860
ORBITER C 1850 33 12.766*
* 100 LB~SEC MINIMUM IMPULSE BIT
17TH ORBIT RENDEZVOUS
**USAGE DUE TO ERRORS IN ATTITUDE SENSORS NOT INCLUDED
REQUIREMENTS SUMMARY
Subtask B
A-20
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A-1. THRUSTER LOCATION AND THRUST LEVEL

The APS is required to provide three-axis translation and attitude control
capability for the orbiters, and three-axis attitude control capability for the
booster. Acceleration requirements for these functions are tabulated in Figures
A-11 and A-12. All maneuvers were to be performed at an acceieration level between
nominal minimum and nominal maximum, with no thruster failures. In order to
provide safe return of the vehicle in the event of thruster failures, 1t was
further required that all maneuvers be performed at an acceleration level above
minimum with two thrusters inoperative.

Several factors, including thrust level, number of thrusters, thruster function,
minimum cross coupling, and vehicle heat shield penetration must be considered in
evaluating alternate thruster locations. These factors cannot, however, be inves-
tigated independently, since they are directly dependent upon one another (i.e.,
given acceleration requirements can be fulfilled by several combinations of thrust
level, number of thrusters, and thruster location). However, some general ground
rules were established. It is most desirable to use a common thruster design to
perform all APS functions rather than to utilize thrusters of a different thrust
level for each function. In this manner only é single thruster development program
is required. Providing a common thrust level for all functions was accomplished
by tailoring the number of thrusters and locations to meet the overall control
requirements, Thrusters of a single thrust level can also be located in such a
manner that they provide moments with respect to more than one axis. Thus, one
group of thrusters can perform more than one function (for example, pitch and roll),
resulting in fewer thrusters.

When the above guidelines are combined with the more obvious physical con-
straints on thruster location, it becomes apparent that choice of thruster locations
becomes an iterative process. A summary of the Orbiter B thruster arrahgements
which were studied is presented in Figure A-13. The chosen design utilized 1850 1b
thrusters with pitch and roll functions coupled. The vehicle thruster locations
and functions for the chosen design are described in Figures A-14 and A-15. The
various thrust level/number of thrusters combinations which were available for the
chosen thruster arrangement are presented in Figure A-16 and the maneuvering

requirements and capabilitites (given in terms of total thrust) are presented in

A-21
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Figure A-17. As shown, the chosen design resulted in a thrust level in yaw and the
Y and Z directions above the desired nominal maximum level. For roll, requirements
can be met with less than the available number of thrusters without cross coupling.
These higher than desired accelerations were offset by the advantage that this
approach results in a minimum number of thrusters and has a common thrus; level
with the booster thruster design. Operational modes for the design are presented
in Figure A-18, which shows that, for nominal operation, coupling_exists only in Y
translation and yaw maneuvers.

A summary of the Orbiter C thruster arrangements is presented in Figure A-19.
The arrangement chosen, which provides the minimum number of thrusters and allows
common thrust level with the booster thruster, was complicated by the center of
gravity location. The vehicie is so shaped that for most of the length of the
vehicle, the center of gravity is below the top of the heatshield; therefore, to
minimize cross coupling, it would be necessary to locate the thrusters in the heat
shield. Thrusters located in the heat shield cannot be used during reentry be-
cause in order to minimize heat transfer to the vehicle interior, covers must be
provided. The avoidance of heat shield penetration, without excessive coupling of
axes, limited the number of feasible thruster arrangements.

The vehicle thruster locations and functions for the chosen design are described
in Figures A~-20 and A-21. Heat shield penetration could not be avoided for thruster
assemblies 4 and 11; however, during reentry, the remaining thruster assemblies
satisfy thevacceleration requirements but with an increase in cross coupling.
Special covers are required for thruster assembly 11, but thruster assembly 4 is
located in the nose landing gear well; so that the landing gear door can be used
to cover these thrusters during reentry.

The thrust level/number of thruster combinations which were available for the
chosen arrangement are presented in Figure A-22, and the maneuvering requirements
and capabilities in terms of total thrust are presented in Figure A-23. As shown,
the chosen design resulted in a thrust level, in yaw and the Y and Z directions,
above the desired level. These higher than desired accelerations were offset by
the advantage that this approach resulted in a minimum number of thrusters and
has a common thrust level with the booster design. The operétional modes for the
design are presented in Figure A-24, For nominal operation, coupling is present

only in yaw and in pitch during reentry.
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MANEUVER THRUSTER OPERATIONAL THRUST CHAMEERS c O | COUPLING
ASSEMBLIES MODE USED LEVEL 19%% EFFECTS
+X 3¢ NOMINAL 3a,3b,4a,4 .878 NONE
ONE ENGINE OUT 3b,3¢,4b, ke LE78 NONE
TWO ENGINES OUT 3¢,b8,45,4¢e .878
-X 1&2 NOMINAL 1,2 439, NONE
ONE ENGINE OUT 2 .219 Y, YAW
THO ENGINES OUT - ot
+Y 5&15 NOMINAL 52,158 439 ROLL
GNE ENGINE OUT 5b,15a 439 ROLL
THO ENGINES OUT 15a,15b 439 ROLL
- 6 &16 SAME AS + Y
+2 8,10,12 & 14 NOMINAL 8,10,12,14 621 NONE
» ONE ENGINE OUT 10,12 312
TWO ENGINES OUT 8,1, 312 PITCH
-2 7,9,11 & 13 SAME AS =2
+ PITCH 8,10,11 & 13 NOMINAL 8,10,11,13 - . 1.008 NONE
' ONE EICINE OUT 10,11 . 504
TWO ENGINES OUT 11,13 . 504,
- PITCH 7,9,12 & 14 SAME AS + PITCH
+ YAW 5&16 NOMINAL 5a,5b,16a,16b 1.760 ROLL
ONE ‘ENCINE OUT 5b,16b .880 ROLL
TVO ENGINES OUT 16a,16b .880 ROLL
- YAW 6&15 SAME AS + TAW
+ ROLL 8,9,12 & 13 NOMINAL 8,9,12 & 13 2.580 NONE
T ONE ENGINE OUT 12,13 1.362 NONE
TWO ENGINES OUT 8,9 1.220 NONE
- ROLL 7,10,11 & 14 SAME :AS + ROLL
OREITER B
THRUSTER OPERATIONAL PROCEDURE
FIGURE A-18
A~-30
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ANEUVER THRUSTER OPERATIONAL THRUST CHAMBZRS ACCELERATION, | COUPLING
! ASSHBLIES filesk) USED LEVEL (DEG/SEC?)| EFFELCTS

+ s 8 NCTAL 7a,7b,2a,€b 872 KOHE
X 4 ONE BGINT CUT To,7c,2a,6b 272 telE
TI0 1GLIES OUT 7e.8a.8b “654 NCUE
- &6 NCITIAL 5,6 436 NGIE
X ’ QT DIGINE OUT '8 218 1A
0 EXGILTS OUT - - -
+ & HCXTIAL 38,9, % 654, NO:E
Y 3e9 CiT ZOINE OUT 3b,%a,9b 2654, GiE
THO ZNGINES OUT %a,%b,9¢ “654 o
-Y 2810 SAME AS + Y
+ en HCMIVAL La,1la,11b .654 NOKE,
z v CE TOIVE OUT Lb,11a,11b 2654, KGE
T.C TISLITS OUT Le,11b,11c “654 CIE
- 1, 12¢1 NCMINAL 1a,12a,13a 654
z ! 3 WE ZSINE OUT 1b,125,13b 654
TIC BGLES OUT | le,12b,13b “654,
- 12& NGHTMAL 4a,4b,12a,13a 2.025 o
FITCH 12 & 13 CRE TOIIE CUT Ib,hc, 128,138 2.025 =
T.C EBLTS OUT Le,12a,1% 1,368 z
- & NOMINAL 1a,1b,11a,11b 2.025 NONE
o 1en QNE ENGINE OUT 1b,1e,11a,11b 2.025 NONE
TWO ENGINES OUT lc11a 1.012 NOVE
—_
+PITCH - 12 & 13 NOMINAL 12a,12b,138,13b 1.430 z
DURING ONE ENGINE OUT 12b,12¢,138,1%b 1.430 z
REENTRY TWO ENGINES OUT 12¢.13 715 z
- PITCH 1 NOMINAL 1,15 1.243 z
DURT:G OKE ENGINE OUT ble 1,243 z
REENTRY TWO ENGINES OUT 1c 622 z
+ AW 3410 NOMINAL 3a,3b,10a,10b 1.853 ROLL
ONE ENGINE OUT 3b, It .925 ROLL
WO ENGINES OUT 102,105,10¢ 1.022 ROLL, Y
- AW 2&9 SAME AS + YAW
+ ROLL 1 & 12 NOMINAL 1a,12a 2,019 NONE
ONE ENGINE OUT Wiz 2.019 NONE
WO ENGINES OUT Lal12¢ 2.009 NONE
~ ROLL 1 &13 SAME AS + ROLL
3
ORBITER C
THRUSTER OPERATIONAL PROCEDURE
FIGURE A-24
A-36
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A summary of the booster thruster arrangements which were studied is presented
in Figure A-25. The arrangement chosen uses eighteen 1850 1b thrust level thrusters.
This approach provided minimum number of thrusters and subsystem weight. The
vehicle thruster locations and functions for the chosen design are described in
Figures A-26 and A-27. This configuration provided complete attitude control with-
out thruster penetration of the heat shield., The various thrust level/number of
thruster combinations which were available for the chosen arrangement are presented
in Figure A-28, and the maneuvering requirements and capabilities in terms of
total thrust are presented in Figure A-29. Thrust levels for all maneuvers are
within the desired range. Operational modes for the design are presented in
Figure A-30. With the exception of the double failure mode, there are no coupling

effects.

A-37
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A-2, TMPULSE REQUIREMENTS

Revisions to the thrust level, thruster locations, vehicle characteristics
and mission timeline which were made prior to Subtask B affected APS total impulse
requirements, It was, therefore, necessary to update APS total impulse require-
ments prior to proceeding with Subtask B.

The main translation maneuver requirements are primarily a function of the +X
velocity change requirements for orbit establishment, orbit transfer and deorbit.
Operationally, maneuvering requirements could be fulfilled by the APS alone, or
by the APS in conjunction with a separately designed orbit maneuvering subsystem
(OMS), However, subsequent to Subtask A, NASA selected the operational approach
wherein the APS would perform all maneuver requirements, thus eliminating the need
for an orbit maneuvering subsystem. Subtask B impulse requirements were, there-
fore, defined only for this operational approach.

Mission impulse requirements were determined for Orbiters B and C and the
Booster using the same approaches and assumptions used during Subtask A (Reference
(b)). Orbiter requirements were determined for both third and seventeenth orbit
rendezvous missions. In order to demomstrate the effect of minimum impulse bit
(MIB), limit cycle impulse requirements were determined with MIB's of 50, 100, and
150 1b-sec. The results of this study are presented in Figure A-31.

A-44

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



REPORT MDC E0298

HIGH PRESSURE APS

SUBTASK B

12 FEBRUARY 1971

STVIOL USTAWL

JUowRITNDOY ON  smme
STATITTION 4%
088~JqT - Joqsnayyaed 4Tq oSTNAWT UWNUTUTH = gIH ¢

FIGURE A-31

000°2TECET 00049882 T 000°000°€T 000°¢0T9°2T 0ST
000 ‘%798 000°99L°2T 000°06€°2T 00099921 000¢90¢€ ‘2T 00T TVIOL
000°8ET°2T 00026021 000°49Y°2T 000¢teTéeT 09
S ANTNVIH
e 000‘809°TT 000062 1T 000°€LESETT 000‘622°TT NOILVISNVYL
DNTHZANANVI
000798 00L°02L 00%¢20L 000°198 000°7€8 AANLILLY
008286 004°¢68 00T ‘209 002 ‘ L11S 0ST
% 008 °9¢t 002 ‘ L6E 009°L92 00z ‘¢hre 00T TOYINOD
ZANLILLY
002 ‘60T 00€ ‘66 006 ‘99 008°09 0¢
SNOAYTANTY SNOAYA ANHY SNOAYZANTY SNOAMTANTH dTH
LISU0 YILT LIGY0 PIg II90 UILT IIGHO Pag
TA1S00d 0 YLIIFH0 g YEIIFHO

A-45

MCDONNEILL DOUGILAS ASTRONAUTICS COMPANY = EAST



HIGH PRESSURE APS REPORT MDC E0298
SUBTASK B 12 FEBRUARY 1971

A~3., REFERENCES

(2) NASA-MSFC, Space Shuttle Vehicle Description and Requirements Document,
dated 1 October 1970.

(b) Anglim, D. D., Baumann, T. L., Ebbesmeyer, L. H., High Pressure Auxiliary
Propulsion Subsystem Definition Subtask A Report, McDonnell Douglas Report
No. MDC E0297, dated 12 February 1971.

A-46

MCDONNELL DOUGILAS ASTRONAUTICS COMPANY = EAST



HICH PRESSURE APS REPORT MDC E0298
SUBTASK B 12 FEBRUARY 1971

APPENDIX B
THERMAL ENVIRONMENT DEFINITION

The vehicle internal environment determines the amount of heat transferred to
the APS propellant tanks and the resultant weight penalties associated with main-
taining the low propellant temperatures. Heat transfer from the environment to
the cold gaseous propellants in the accumulators and lines also affect the APS
operational characteristics. These environmental temperatures are determined by
the local vehicle external heating rate as moderated by the thermal capacity and
radiative properties of elements around the region of interest. The model used to
calculate typical environments is shown in Figure B-1. It consists of an external
skin, a radiation gap, a layer of Micro-Quartz, another radiation gap, and a wall
with a thermal thickness corresponding to that of the main engine propellant tank.
Transient calculations were directed particularly toward establishing temperature
histories for the inner Micro-Quartz surface and the main engine propellant tank
because these surfaces provide the surrounding environment for most of the APS
lines and components. Results were utilized in a conservative manner. For those
APS elements where heating was deemed desirable, the temperature was assumed to
correspond to the lowest surrounding temperature. The upper limit was used, how-
ever in all cases where heating was considered undesirable.

Orbiter Ascent Heating - Typical vehicle side and bottom temperature histories

during ascent are shown in Figure B-2 for areas near the main engine hydrogen tank
and in Figure B~3 for areas near the main engine oxygen tank. The cryogenic
temperatures of the main engine propellant tanks during ascent provide component
environmental temperatures below the on-orbit temperatures.

Orbiter On-Orbit Heating - During orbit the difference in heat flux associated

with different vehicle locations and orbital trajectories leads to substantial
variations in the vehicle internal environment. Envelopes of the orbiter environ-
mental temperature range for components located within the vehicle are presented
in Figure B-4 for high and low beta angle orbits where beta angle is defined by
Figure B-5." As a simplification, the bottom of the orbiter is assumed to always
face the earth. For the low beta angle case, three regions have been defined.
These regions correspond to the temperature history expected for the inmer surface
of the Micro-Quartz at the top of the vehicle, where the orbital oscillations are
most severe, at the side where the heat flux is comparatively low, and on the
bottom, where the thick Micro-Quartz and the relatively constant heat flux from
B-1
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the earth maintains a nearly constant inner surface temperature. Depending upon
their location, components might be required to withstand either nearly constant
temperature, corresponding to a side or bottom location, or oscillations similar

to those of the top. For the high beta angle case, the environment shown corresponds
to that expected for the first orbit as well as an approximate steady state range.

Orbiter Reentry Heating - Orbiter reentry thermal histories are presented in

Figures B-6 and B~7. The difference in the thermal histories for the various loca-
tions is caused by differences in local heating rates and variations in the insula-
tion time constants. The reentry analysis shows an extremely slow cooling rate of
the inner insulation surface even after reentry has been éompleted. This requires
that APS components must withstand the reentry thermal environment for much longer
than the actual time of reentry; however, natural convection, not included in the
analysis, would provide more rapid cooling than that shown.

Booster Ascent and Reentry Heating -~ The thermal environment experienced by

the booster is similar to that of the orbiter during ascent. The booster reentry
heating is substantially less, however, than for the orbiter. The booster internal
thermal environment was based on the radiative average of the tank temperature and
the temperature of the surroundings. These estimates are shown in Figure B-8 for

a region near the canard on the upper surface where interference heating during
ascent is significant and includes the effect of a radiation shield between the

skin and the APS components.
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APPENDIX C
APS INSTALLATION

A realistic installation of the APS into the space shuttle must take into
consideration location of other equipment and the effect of environment on compo-
nent design and operation. The location of internal shuttle equipment such as
main engines, main tanks, etc. are defined in the Space Shuttle Vehicle Description
and Requirements Documents, Referencg (a). The internal thermal environments are
defined in Appendix B. The primary thermal constraint considered for APS installa-
tion was the desire to eliminate heat shield penetration by the thrusters. 1In
addition to component installation, a realistic supply line routing was required
to allow modeling for weight definition and for development of transient operating
and performance data. Where special installation considerations were required,
such as heat shorts to the vehicle structure, component installation layouts were
made to define the details of component design and attachment.

The APS is composed of four primary assemblies; these are:

(1) thruster assemblies including flow control valves

(2) propellant accumulators, regulators, valves, and propellant distribution

lines

(3) propellant conditioning assemblies, consisting of turbopumps, gas

generators, and reburn heat exchangers

(4) propellant storage assembly, consisting of tanks, insulation, propellant

acquisition, and pressurization subassemblies.
Installation considerations for each of these assemblies are shown in Figures C-1,
C-2, and C~3, and are discussed below.

Figures C-4, C-5, and C-6 show the selected thruster installation locations
for Orbiters B and C and the Booster, respectively. No heat shield penetration
was required except for Orbiter C. The Orbiter C on-orbit (+) pitch thrusters
are located under the nose wheel door. These will not necessitate any additional
heat shield doors as they are normally protected during entry. The aft (-) pitch
thrusters or Orbiter C, which also prevent on-orbit pitch coupling during the roll
maneuver, must be protected by a heat shield door that is closed during entry.

The details of thruster installation are shown in Figure C-7. The tie points
to the structure are stringers which also mount the vehicle skin (shingles). These

stringers are in turn attached to the main engine tank. The distance between

MCDORNELL DOUGLAS ASTRONAUTICS COMPANY =« EAST
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stringers can change due to thermal expansion and the shingles are only retained,
not constrained, as they will expand differently during flight. The method of
mounting allows the distance between stringers to change and also allows the
shingles to float around the thruster nozzle without imposing thruster stresses
either at the mounting plane or at the nozzle exit. Also shown are methods of
sealing the nozzle with the two types of vehicle skin through which the thrusters
must fire. One configuration is for the bottom side high temperature skin pene-
tration and one is for a lower temperature skin nearer the vehicle top. Access

to the thruster mounting and to the thruster components for adjustment or replace-
ment is by removing the skin panel surrounding the thruster nozzle. These panels

are normally removable in the shuttle design to allow replacement.
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C-1. ACCUMULATORS AND DISTRIBUTION LINES

Accumulators are installed in close proximity to the conditioning assembly.
The criteria for line routing were minimum weight, consistent with good installa-
tion, and providing the capability for line insulation inspection and replacement
if required. The main propellant lines are routed adjacent to the payload bay
which provides access for inspection and maintenance. Manifolds and manifold
isolation valves were located to minimize line lengths and number of isolation
valves within the vehicle physical installation constraints.

The resulting line lengths and sizes for the vehicles are shown in Figures
C~8, C-9 and C-10. The installation of lines between maﬁifolds and accumulators,
i.e., main distribution lines, are implemented with expansion joints, pressure
balanced compensators and line supports as shown in Figure G-11 (Orbiter B). The
lines to the individual thrusters from the manifold are installed such that bends
and, if necessary, loops provide expansion capability. The line routings to the

Line connections are shown in Figure C-12. Connections will be bolted flanges
with redundant seals in locations which are accessible to allow installation and,
if necessary, removal and replaqement. The other type of connectors, either
swaged or welded, will be utilized in areas that are not accessible and for lines
which are not thought to require any maintenance for the vehicle lifetime.

The type of line insulation to be used was defined as a result of a trade
study which compared alternate methods of insulation. The alternate means of
insulation considered were:

(1) wvacuum jacketed lines

(2) 1lines insulated with high performance multilayer insulation, protected

by a flexible cover.
The vacuum jacketed line would be implemented as shown in Figure C-13. The
weight comparison of the alternates is shown in Figure C~14. Also shown are the
various methods of implementing both the vacuum jacketing and protection of the
high performance insulation. Comparison of the weight and complexity of these

approaches showed that vacuum jacketing would result in high weight penalties and

c-10

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY =~ EAST



HIGH PRESSURE APS REPORT MDC E0298
SUBTASK B 12 FEBRUARY 1971

the installation would be quite complex. For these reasons, the flexible jacket
approach was selected for feedline insulation .

The insulation thicknesses and associated temperature rise rate of the pro-
pellants within the lines is defined in Appendix E. The requirement to limit
thruster mixture ratio excursions was the criteria used to define the required

line insulation thickness.

C-1
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C-2. CONDITIONER ASSEMBLIES

The conditioner assemblies are mounted in as close proximity to the propellant
tank outlet as allowed by physical constraints. With the oxygen tank and con-
ditioner mounted forward of the payload bay, excessive weight penalities would
be involved in ducting conditioner vent gas to the vehicle aft end; therefore,
venting is accomplished on the vehicle side near the conditioner. The non~
propulsive venting is at 90° to the vehicle center line and the propulsive

venting is 45° aft.
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C~3. PROPELLANT STORAGE ASSEMBLY

The propellant storage assembly locations were constrained to be those
defined in Reference (a). For Orbiter B the oxygen tank is forward and the hydro-
gen tank aft of the payload bay. Orbiter C required both propellants to be aft;
however, the hydrogen required two tanks because of physical installation con-
straints, The defined locations provide ready access for maintenance and/or
installation/removal through the payload doors. The tanks are mounted by fiber-
glass struts in the form of 6.0 in. diameter tubes ranging in thickness from
.035 to 0.10 in. Pin joints at the attachment points accommodate deflections
due to loads and thermal expansions. The attachment is defined in detail in

Appendix D~1.9,

Cc-20
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APPENDIX D

BASELINE COMPONENT AND ASSEMBLY CONCEPTS

Component and assembly concepts of the Subtask A study were used for APS
trade studies only. A detailed evaluation of component design and operational
characteristics was not warranted except in specific instances where it could
significantly affect the APS trade study results. During Subtask B preliminary
design, all component and assembly concepts were reevaluated to the depth neces-
sary for preliminary design of the recommended subsystem.

Trade studies of the propellant tankage assembly, conditionmer assembly, and
thruster concepts were conducted to determine optimum overall APS performance.
These analyses resulted in selection of baseline component and assembly concepts.
For these selected concepts detailed design and operating characteristics were
defined. This appendix describes results of this analysis and provides data and

rationale used in concept selection.

D-1
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D-1. PROPELLANT STORAGE, ACQUISITION, AND PRESSURIZATION

The APS uses hydrogen and oxygen propellant stored in a subcooled state to
provide the total impulse required for vehicle control. A turbopump assembly
delivers these propellants from cryogenic storage tanks to the propellant condi-
tioner assembly at the pressure and flow required for APS operation. Turbopump
operation requires that the propellant temperature and pressure be such that a net
positive suction pressure is available at the pump inlet. In addition, during
low-g portions of flight, the propellant tank outlet must be covered with propel-
lant so that pressurant gas is not introduced into the pump inlet. These require-
ments demand a tankage assembly with an efficient propellant acquisition subassem-—
bly, a propellant temperature control subassembly, and a pressurization subassembly.

During Subtask A, analyses and trade studies were conducted to identify pre-
liminary propellant storage assembly selections. It was concluded that integrated
APS and OMS tankage was the most attractive of the concepts evaluated. It was also
concluded that a simple, regulated pressure, helium pressurization subassembly was
most attractive for both the hydrogen and oxygen tanks. Component models used to
conduct Subtask A analyses were not sophisticated, and (especially in the case of
the propellant positioning and vent subassemblies) design details were not impor-
tant since these had little effect on subsystem weight. During Subtask B, it was
necessary to conduct the detailed analyses required to define more accurately the
design and performance of propellant tankage assemblies and to confirm and/or
update the propellant integration approach selected in Subtask A.

For these analyses, baseline tank sizes were established based on Subtask A
requirements, alternate design approaches for different tankage assemblies were
investigated, preferred approaches were selected, and design and performance
characteristics were established.

Significant APS tankage requirements affecting preliminary design are shown
in Figure D-1.

D-1.1 Propellant Acquisition Subassembly - A propellant positioning device

is required in the APS tankage to ensure liquid outflow during the low-g orbital
phases of the mission. During these mission phases, vehicle accelerations tend
to randomly orient the bulk propellant mass within the tank, with the potential
of uncovering the tank outlet and causing a loss of pressurant gas and interup-

tion of liquid flow. Some device is required to either totally constrain the
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liquid at the tank outlet or to provide a path of communication from the liquid
mass to the tank outlet. Total constraint by positive eipulsion was impractical
because of the tank size, the number of cycles required for reuse, and the cryo-
genic nature of the propellant. The only reasonable approach available was to use
a surface tension screen device to provide a flow path to the tank outlet.

Surface tension devices have been successfully used on several vehicles includ-
ing the Agena, Apollo, X-~15, and drone and target aircraft. These devices have been
subject to extensive laboratory testing. They are passive in nature and have no
moving parts, resulting in high reliability and multicycle reuse capability. Suffi-
cient design information was available to establish with high confidence that a sur-
face tension assembly could be designed for orbiter application. Basic physical
processes associated with the surface tension concepts are shown in Figure D-2,
Under normal operation, the screen is completely wetted on one side. If gas con-
tacts the screen on the other side, surface tension forces prevent movement of the
vapor through the screen. When liquid is in contact on the other side, liquid is
free to travel from one side to the other as the surface tension effect is not
present. Thus, successful acquisition of the liquids will be achieved until:

(1) there is no 1iquidlliquid:interface

(2) acceleration forces of sufficient masnitude to exceed surface tension

pressure capability are ﬁresent

(3) heating below the screen causes vaporization on the liquid side and hence

a gas/gas interface across the screen. In this case, the surface
tension screen would preferentially flow pressurant gas.

D-1.2 Acquisition Concepts and Seleétion - Three basic acquisition assembly

designs are available., These are illustrated schematically in Figure D-3. The
first acquisition device consists of a screen configured to locate the screen sur-
face in close proximity to the tank wall, i.e., a wall oriented screen. With this
approach, liquid withdrawal is possible as long as liquid is in contact with the
tank wall. This approach is, therefore,‘mission—independent, since the 1iquids
are wetting and will always assume a wall contact orientation. The second device
is a start basket. This approach is mission~dependent, because it must be
refilled by translation accelerations periodically during the mission. It also
requires two tank outlets since the large +X translation acceleration will

settle propellant in the -X end of the tank (refilling the basket) while entry
decelerations will settle the propellant in the -Z or bottom of the tank., The
third acquisition candidate is a hybrid assembly combining the start basket with

D=4
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- Screen Wall Pickup Start Basket

1. MUST BE LAUNCHED FULL 1. PARTIAL FULL LAUNCH POSS'BLE 1. PARTIAL FULL LAUNCH POSSIBLE
2. MISSION-INDEPENDENT, NO 2. T#O TANK OUTLETS REQUIRED 2. SINGLE TANK OUT

SETTLING REQUIRED .3. MISSION-DEPENDENT. SETTLING 3. BASKET SIZED TO PROVIDE LIQUID
3. SINGLE TANK OUTLET REQUIRED WHEN LIQUID IS IN - X END OF
4. LARGE SIZE REQUIRES FINE 4. LIQUID ""FALLOUT" DURING OUT- TANK

SCREEN MESH FLOW IN LATERAL ACCELERATION 4. SOMESETTLING STILL REQUIRED
5. LOW-G TRANSFER CAPABILITY 5. NO “FALLOUT" DURING LATERAL
ACCELERATION

ACQUISITION DEVICE CANDIDATES

FIGURE D-3
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a wall oriented approach. Only a single tank outlet is needed, but the device is
still mission-dependent since the basket must be refilled periodically. The wall
oriented device was selected because it is mission~independent, does not require
two outlets, and does not require refill.

Several alternates could be conceived for a wall oriented positioning
approach., The most conventional of these is a continuous tank liner made of
screen. This approach has received the most attention in exploratory development
testing, but was considered to be impractical for a large tank because of fabri-
cation difficulty and boost ullage considerations.

An alternate and more practical configuration is a screen channel device,
illustrated in Figures D-4 and D-5. Several aluminum channels or annular trays
are located within the propellant tank in close proximity to the wall. These
assure contact between the liquid and the positioning device under any random
orientation conditions. The device is insensitive to boost accelerations as the
trays are submerged during boost, and it is the most practical design approach
from fabrication and screen size standpoints. The design provides the capability
to check the screen bubble point pressure after complete tank assembly.

D-1.3 Design - The propellant acquisition device consists of three screen
channels or trays, around the circumference of the propellant tank and a single,
enclosed collector channel which connects each annular tray to the sump (Refer-
ence Figures D-4 and D-5). The annular trays are normal to the longitudinal
(or +X) axis of the vehicle and the sump is located in the tank bottom (or the
-Z) extremity of the tank. The tank outlet has é cone-shaped vapor/liquid inter-
face screen located within the feed line below the sump. The feed line below
this screen is connected to the.propellant tank by a small vapor relief line to
allow by-pass of any vapor developed in the line back into the tank vapor region.
Screen acquisition device operation is the same for both fuel and oxidizer tanks.
The solid portions of the trays are formed from 0.02 inch aluminum sheet. The
center wall in the channel is present to increase the rigidity of the box cross
section. It is antiéipated that the channels would be fabricated in quarter
sections, inspected, and then joined togehter inside the tank. Each quarter
section has two points of attachment to the tank wall. At these points, thin,
low conductivity fiberglass rods support the channel.

D-1.4 Operation - It is a requirement that the screen surfaces contact
the bulk liquid throughout the mission and that channels remain. completely full

D-7
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of liquid at all times. During outflow, the acquisition device will selectively
pass liquid to the feed system if it is in contact with a liquid mass. The wall-
oriented nature of the screen device ensures that contact will be made. Screen
mesh and flow passage dimensions are selected so that the pressure drop across the
screen vapor/liquid interface never exceeds the screen bubble point prior to
reentry. ‘Two different mesh sizes have been selected for use in the screen chan-
nels. A relatively coarse mesh can be used in the screen channel near the aft end
of the vehicle. The other two channels require a finer mesh to withstand hydro-
static head, existing during periods of high maneuver accelerations and low pro-
pellant loading.

Screen channel ring placement within the propellant'tank was based on propel-
lant quantities prior to entry. Approximately 3 percent of the propellant will be
in the APS tank prior to entry and it will be settled in the -X end of the tank
during the deorbit burn. The bottom screen channel is placed just below the bulk
liquid surface at this propellant loading. Subsequent to deorbit burn, propellant
will be reoriented to the tank sump by entry drag forces; therefore, it will remain
in contact with one or both of the remaining screen channels. High +2 acceleration
levels during entry will exceed the stability limit of the acquisition device.

When this occurs, pressurant enters the screen channels, the liquid levels
within the channels, and the collectors will quickly drop until they match approx-
imately the liquid level in the tank bottom (-Z).

D-1.5 Insulation - Considerable research has been, and is being, devoted to
development of high performance insulation (HPI) concepts. 1In generai,'HPI con-
cepts utilize sheets of highly reflective metallized plastic film, such as alumi-
nized mylar, made into blankets. Separation of the sheets in the blankets is
provided by embossing or flocking the basic film material or by using a separator
sheet such as dacron netting or glass fabrics. Many design variations are possible
and separate technology studies are currently'under way to establish optimum HPI
shuttle designs. For purposes of this study, however, differences in alternate HPI
approaches would have little effect on overall storage weight. For this reason,

a typical HPI concept was selected and uséd to optimize the needed amount of insu-
lation, and to define reasonable propellant storage and vent losses.

D-1.6 Insulation Selection/Optimization - MDAC-East (under an insulation

technology study with NASA, Contract No. NAS 8-~21400) has investigated various

HPI concepts. Based on this effort, typical insulation characteristics were

D~10
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selected for APS tankage analysis. The selected scheme is made up of double alumi-
nized 0.15 mil mylar (DAM) reflectors with a dacron net separator. A density of
5 1b/ft3

insulation. This insulation has been experimentally evaluated through calorimeter

based on sheet density of 90 sheets per inch is representative of this

test of blanket samples. Figure D-6 shows the basic insulation characteristics and
effective conductivity degradation caused by perforations, joints, and attachments.
Data of Figure D-6, together with baseline propellant requirements, were used to
optimize HPI thickness for the shuttle mission. Insulation thickness was based on
providing a maximum storage efficiency, (i.e., ratio of usable propellant vapori-
zation to boil-off). This assumpfion accords with the thermal vent/shroud sub-
assembly, which converts heat input into hydrogen vaporiiation. Resulting optimum
number of insulation layers, and total weight of propellant vented (assuming no
heat shorts) are shown in Figure D-7 as a function of orbit time. Optimum insula-
tion for the Orbiter B hydrogen tank has 62 sheets, 0.68 in. thick, weighing 222 1b.

D-1.7 Reusability Characteristics — One of the major concerns in insulation

design is the reusability requirement. High confidence can be placed in the pre-
diction of basic HPI heat transfer characteristics and thermal performance; how-
ever, effects of multiple venting and pressurization cycles are not known. Data
are available to show that unprotected insulation would freely vent during ascent
without significant pressure gradients, but no data are available to show the
effects of reentry on HPI performance. It is known, though, that any form of con-
densation within the mylar layers can cause severe degradation in thermal charac-
teristics. Condensing and freezing water within the layers can remove the alumi-
num coating from the mylar. Thus, a means of protecting the insulation from
atmospheric contamination is required. The following paragraphs describe candidate
insulation concepts, their performance, and selection of the preferred concept.

Three basic insulation concepts (illustrated in Figure D-8) were evaluated
for the hydrogen tank. The simplest uses an insulation purge with a noncondensable
gas., This allows use of a semirigid cover, or flexible bag, to protect the HPI.
Effective conductivity of the insulation approaches that of the purge gas during
nonvented conditions. .

The second approach is a substrate concept, in which foam insulation is used
under the HPI, The foam has a lower conductivity than helium-purged HPI, and its
thickness is sized so that nitrogen can be used for ascent purging rather than
helium (i.e., foam provides sufficient temperature differential to prevent nitro-
gen condensation). For reentry, the foam will be at the temperature of the liquid

- D=11
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DOUBLY ALUMINIZED MYLAR (DAM) - DACRON NET SEPARATOR

15 IN LH, CALORIMETER TESTING - T, = 530°R
BASIC INSULATION BLANKET K, = 1.37 x 1072 -—5%9151
FT2HROR
WITH 2.3% PERFORATIONS 1.69 x 107°
WITH 2.3% PERFORATIONS AND 2.03 x 107°
JOINTS
WITH 2.3% PERFORATIONS, 2.217 x 10°

JOINTS, AND ATTACHMENTS

MULTI-LAYER INSULATION
MEASURED PERFORMANCE CHARACTERISTICS

FIGURE D-6
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BOOST/REENTRY THERMAL PROTECTION CONCEPTS
FIGURE D~8
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propellant. Thus, to avoid cryopumping on the hydrogen tank, a noncondensing gas
(helium) purge (concept B-1) or helium purge followed by nitrogen purge (concept
B-2) will be required during reentry.

The third protection concept employs a double-walled dewar tank and maintains
the insulation in a vacuum. This obviously results in maximum thermal performance,
because the insulation is always in a vacuum and boiloff losses during boost and
entry are minimized; however, the outer vacuum jacket is a significant structural
element, representing a high weight penalty.

Propellant losses for a typical mission were calculated for the three con-
cepts. These are shown in Figure D-9. The simple purge approach has extremely
high losses. The substrate concept reduces these by a féctor of nearly five but
is still greater than the dewar configuration which suffers minimum propellant
loss.

Figure D-10 compares total weight penalty for several alternate approaches,
including purge systems using different gases. The simple purge system and the
dewar are obviously noncompetitive from a weight standpoint. Other candidates
are relatively close. On this basis, the preferred configuration for hydrogen
is a purged foam substrate. Although the weight penalty could be reduced by
using a dual reentry purge (helium followed by nitorgen), the weight penalty is
small. For these reasons a simple single purge system (nitrogen for ascent and
helium for reentry) was selected. For the oxygen assembly, gaseous nitrogen
can be used for purge without a substrate. Performance of candidate oxygen
concepts is shown in Figure D-11. Weight penalties are smaller, and there is
generally less difference between concepts than in the hydrogen systems. Either
a dewar tank, or a simple nitrogen purge system, appears practical. As is true
for the hydrogen systems, the dewar weights are optimistics; therefore, the
nitrogen purge system was selected for oxygen.

D-1.9 Tank Heat Shorts - The multilayer'HPI is used to reduce propellant

heat transfer through the tank wall. In any cryogenic tankage design, however,

it is necessary to give careful attention to the various heat shorts associated
with tank mounting structure and feedlines. Previous studies have shown that point
support with low conductivity trusses must be used to provide low support losses.
Figure D-12 shows the influence of support materials on general thermal perfor-
mance. As shown, fiber glass is one of the most attractive materials for tank

support because of its high strength, low density, and low conductivity. Figure D-13

D-15
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N2 PURGE DEWAR TANK

LO, VENT LOSS : 70 LB 34

HARDWARE WEIGHTS
INCREASED TANKAGE 2 1

FOAM INSULATION - —_—

HPI JACKET 54 220
PURGE GAS SUPPLY 31 -
87 221

TOTAL WEIGHT PENALTY 157 1B 255 1B

LO, THERMAL PROTEC TION COMPARISON

OCRBITER B

FIGURE D-11
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SIMPLE 4G TENSION SUPPORT - LOAD -9400 LB
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ALUNMINUN

10 /

'Y

1.0 /

~eg———— STEEL

~——————TITANIUM

SUPPORT HEAT FLUX -~ BTU/HR MEMBER

0.10 /

~=t————FIBERGLASS

0.01
0.1 1 10 100

CONDUCTIVITY 10-7 BTU-FT
YIELD LB-HR °R

SUPPORT

INFLUENCE OF SUPPORT MATERIAL SELECTION ON HEAT FLUX

FIGURE D-12 FIGURE D~-12
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shows a typical layout for a tubular strut tank support system. Practical strut
dimensions, weight, and heat transfer characteristics are also shown. Analyses

were conducted to identify the heat short through the various feed lines to the

tank. These results are shown in Figure D-14.

D-1.10 Vent/Conditioning Assembly - Long term storage of cryogenics requires

tank temperature control to avoid excessive losses. One technique converts vented
liquid to gas in a heat exchanger and utilizes the heat of vaporization for cooling.
The operation of the device is illustrated in Figure D-15. Liquid hydrogen enters
the vent system at condition A, and is throttled to point B to reduce its tempera-
ture. After throttling, a two-phase mixture exists which is circulated in a

heat exchanger. Heat transfer completes the vaporization until, at the heat

exchanger discharge, the coolant has been completely vaporized (Point C).

D-1.11 Vent Operation - The selected vent in which liquid hydrogen is

extracted from the liquid positioning device operates continuously. Figure D-16
is a schematic of the vent concept. There are four parallel circuits: one for
feed line/sump cooling, one for tank support cooling, one for cooling of the stor-
age tank insulation and pressurization lines, and one for turbopump cooling. The
first two cooling circuits are essentially the same for all heat exchanger approaches.
All four circuits are throttled to the same pressure, so that downstream pressure
remains constant. Hydrogen is extracted from the positioning device and throttled
to reduce its temperature by approximately 7°R. Defining a fixed temperature
difference in this manner allows the heat exchanger design to be made independent
of final tank pressure selection. Seven degrees Rankine was found to give a good
balance between number of coils for feed line/sump cooling and reasonable sizes
for the insulation cooling heat exchanger. Hydrogen exhausted from the hydrogen

tank cooling circuit is used to provide oxygen tank cooling.

D-1.12 Heat Exchanger Concepts - The principal technical issue to be resolved

in design of the vent assembly was definition of the heat exchanger concept té be
used. Three basic options are feasible:
(1) a heat exchanger mounted directly to the tank structural shell
(2) a radiation shroud heat exchanger in which the cooling tubes are separated
from the tank walls

(3) a compact (or internal) heat exchanger inside the propellant tank.
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HEAT TRANSFER RATE BTU/HR
LINE CONDUCTION | GAS CONDUCTION | RADIATION | TOTAL

LO, TANK: FILL/DRAIN (24 IN DIA) 1.53 0.1 0.73 2.36
FEED LINE (24 IN DIA) 1.53 0.1 0.73 2,36
VENT/PRESSURIZATION (I IN DIA) 0.68 0.02 0.06 0.76

SCREEN VENTS (0.25 IN DIA LINES) 0.68 - - 0.68

6.16

LHy TANK:  FILL/DRAIN (24 IN DIA) 1.74 0.87 0.73 3.34
FEED LINE (24 INDIA) L74 0.87 0.73 3.34
VENT/PRESSURIZATION (1 IN DIA) 0.78 0.17 0.06 1.01

SCREEN VENTS (0.25 IN DIA LINES) 0.78 0.04 - 0.82

8.51

FEED LINE HEAT TRANSFER CHARACTERISTICS

FIGURE D-14
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HYDROGEN THERMODYNAMIC VENT DESIGN CHARACTERISTICS

FIGURE D-15
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The simplest heat exchanger is the wall mounted approach. This was analyzed
in detail in Reference (2) which indicated that the tank wall temperature distri-
bution could lead to a significant level of stratification which would be unaccept-
able to the APS, and that mixers would be required with this concept, significantly
complicating design.

The use of a vent cooled radiation shroud (physically isolated from the tank
so that radiation is the controlling mode of heat transfer) will éssentially reduce
radiation heat transfer to zero. Since shroud temperature is kept at or below tank
temperature, all heat through the insulation can be effectively intercepted by the
vapor and coolant. Steady state performance of a device such as this was analyzed
assuming the tube-shroud arrangement shown in Figure D-17.

Use of a compact heat exchanger inside the tank has been studied and ground
tested (References b and ¢). 1In this concept, tank fluid is circulated over or
through the heat exchanger by a low power pump/mixer, which eliminates stratifi-
cation and hot or cold spots in the tank due to unequal heat transfer. A general-
ized mixer sizing analysis is shown in References (d) and (e). Based on a con~-
servative acceleration level of lO—Sg for the orbital gravity field, necessary
fluid and mixer parameters were developed (Figure D-18) together with heat exchanger

data.

D-1.13 Heat Exchanger Comparison - Advantages and disadvantages of candidate

concepts are summarized in Figure D-19. The vapor-cooled radiation shroud concept
is a lightweight, completely passive system, with no moving parts; therefore, it
has been selected as the vent system heat exchanger concept. The internal compact
heat exchanger concept has been extensively studied and has demonstrated adequate
tank pressure control in 1 g testing. However, no low-g tests demonstrating
destratification with very low~power mixers have been performed, and the approach
is complex. The tank wall-mounted heat exchanger is also a rather complicated
installation, which must be integrated with the basic propellant tank. In addi-
tion, mixers would still be required.

D-1.14 Pressurization Subassembly - Two candidate pressurization subassembly

types were considered: autogenous (propellant vapor) and cdld helium submerged
injection. Figure D-20 presents schematics of the candidate concepts. The pres-

surant flow rate capability of the subassembly is sized to maintain the design

D-25
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15 GAGE DAM WITH 0.125 DIA 010 WALL 15 GAGE DAM WITH
DACRON NET (30 SHEETS/IN) TUBULAR 1100 AL DACRON NET (90 SHEETS/IN)
EXTRUSION
BRAZED TO FOIL 0,001 1100 ALUMINUM
FOIL
3 SHEETS DAM WITH
) DACRON NET
Fe L;;«—TANK WALL—fee———— 3
0.42 1N P.U. FOAN 0.005 1100 ALUMINUM FOIL
LHy TANK DACRON NET LO, TANK
COOLED RADIATION SHROUD INSTALLATION DETAIL
'SPACING PASSES THICKNESS WEIGHT
H, SHROUD 2.52 FT 15 0.005IN 61.4 LB
0, SHROUD 2.04 FT 14 0.001IN 5.7 LB
0,001 ~ 0.005 e 0.010
FOIL THESE SURFACES
0.010 COATED WITH
BRAZE MATERIAL
BRAZED JOINT
(TYP BOTH SIDES) MATERIAL — 1100 ALUMINUN
SHROUD CHARACTER_ISTICS
D-26 FIGURE D-17
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HEAT EXCHANGER CHARACTERISTICS

INSIDE
OUTSIDE
AREA, IN®

TUBE DIAMETER, IN

T

TUBE LLENGTH, IN

HEAT EXCHANGER WEIGHT, LB

HEAT TRANSFER COEFFICIINT, BTU/HR-FTZ - °R

L5.3
14.2
386
0.25
492
1,16

MIXER CHARACTERISTICS

H, 0,
INPUT POKER, WATTS 1.2 5.1
EFFICIENCY, PERCENT 10.0 14.0
MIXER WEICIT, LB 0.6 0.8
OUTLET DIA, IN 1.0 1.0
BLADE DIA, IN 1.9 1.9
INTERFACE FLUID VELOCITY, FT/SEC 0.00592 0.00685
PUMPED FLOW RATE FT3/MIN 0,127 0.081
INCREASED H, VENT, LB 4.0 -

INTERNAL HEAT EXCHANGER/MIXER CHARACTERISTICS
FIGURE D~18
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operating pressure during the maximum outflow conditions. The tank operating

pressure was determined by a weight sensitivity study which showed the minimum
weight subsystem resulted with a hydrogen tank pressure of 25 1bf/in2a and an

oxygen tank pressure of 30 1bf/in2a.

D-1.15 Autogenous Pressurization Concept - With this concept, warm gaseous

propellants are drawn from the accumulators and regulated to the required tank
pressures. Heat transfer will initially occur primarily from the gas to the tank
wall, but this heat will subsequently be transferred to the liquid. During long
coast periods, thermal conduction and molecular diffusion will cause the ullage

and propellant to approach thermal equilibrium. Dispersal and motion of the liquid
and gas due to attitude control impulses under low-gravity conditions will cause
increased surface area and convective heat transfer, thus increasing the rate at
which equilibrium is reached. The effects of this process were considered in the
concept evaluation.

With autogenous pressurization, warm propellant vapors present a significant
heat source for the bulk liquid propellants. This heating is reduced by using
intermittent pressurization whereby the tankage is only pressurized during usage.
During nonusage (coast) periods, the tank pressure is allowed to decay. Both
heating and pressure fluctuations effect the integrity of a passive surface ten-
sion acquisition device. Heating could vaporize a portion of the propellant under
the screen, while the pressure reduction could cause vapor pockets in the liquid
if the pressure dropped below the propellant vapor pressure. To ensure the per-
formance of the acquisition device, a separate, refillable tank using cold helium
pressurization has been provided. This concept yields sufficient pressure to
meet NPSP requirements of the turbopumps during start-up until the APS propellant
tank is fully pressurized with autogenous vapors. After the propellant has Been
settled and APS pressure levels achieved, the_start tank refill valve is opened.
Propellant simultaneously flows through the start tank to the turbopumps and
refills the start tank. In this manner, the acquisition device, which is located
in the start tank, can be isolated from autogenous heating.

D-1.16 Cold Helium Pressurization Concept - Helium is. stored at 3000 1bf/in2a

in separate tanks submerged within the propellant tanks and regulated to the required
APS tank pressures. Design of the assembly was straightforward, since the pressuri-
zation process was essentially isothermal. The tank pressure level is continuously

maintained at regulated pressure (25 lbf/inza for hydrogen and 30 lbf/inza for

D-30
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oxygen); however, during extraction, the propellant vaporization rate will not be
sufficient to maintain the equilibrium propellant partial pressure, and the helium
partial pressure will increase during extraction. After extraction has ceased,

the propellant will vaporize until equilibrium vapor pressure conditions are again
satisfied, and tank pressure will increase above regulated pressure. An evaluation
of the maximum préssure to be encountered during the mission indicates that the
pressure will not rise above the pressure level associated with tankage minimum
gage strength capability; thus, no tank venting would be required, and no weight
penalty is involved.

D-1.17 Pressurization Subassembly Concept Comparison and Selection - The

pressurization concepts were compared on a weight basis. The results of this com-
parison is shown in Figure D-21. The relative weights of the concepts shows that
for the hydrogen tank, the autogenous pressurization concept provides a lighter
weight at higher tank pressures. For the oxygen tank the cold gas helium is the
obvious selection. For the hydrogen tank, the concept selection requires that the
potential weight advantage of the autogenous concept be evaluated relative to
increased operational and development complexity.

The cold gas helium pressurization subassembly was selected for the hydrogen
tank. The small potential weight penalty associated with the selected subassembly is
justified because of the inherent operational simplicity and advanced technology
base for the cold gas subassemblies. A common pressurant type subassembly can
be used for both propellants.

D-1.18 Tankage Design Summary - Individual subassembly design characteristics

have been discussed in preceding sections. The complete assembly is summarized
below and in Figure D-22.

Propellant acquisition is accomplished through screen channels, placed in such
a position that some portion of the screen will always be '"wetted," ensuring con-
tinuous fluid flow to the turbopump inlet.

Tanks are pressurized by a regulated supply of helium, the helium pressurant
storage tanks being mounted internal to the propellant tanks, to take advantage
of the volumetric efficiency gained by storing the pressurant at cryogenic temper-
atures.

The tankage concept consists of a 2219 Aluminum pressure vessel, layer of cryo-

foam (on the LH, tank only), cooling shroud made of 0.125 in. diameter aluminum

2
tubing brazed to an aluminum heat barrier, HPI blanket, and fiberglass outer shell.

D-31

MCDORNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



REPORT MDC E0298

HIGH PRESSURE APS

SUBTASK B

12 FEBRUARY 1971

NzH\umquonmmHz 40 ON3 L¥ 3¥NSS3dd -

g 431I1g9y0
NOSIY¥VdWOI LdIONCI NOILVZI¥NSSI¥d

ST 074 14!
i J 3 o
001
, \ — \
_— T 09
L 002
NM L 0og
0% SHON3SO1NY
£L4-FHNT0A
SNVL LavLS VIR0

14

i

6l

(3GNTINI LON ONIZIS ¥OLVINWNIIY CNY

diWNdOgdNL NO W3LSAS SAON3DOLNY 40 133443 O

051 — oLy

002 7 3N
¢14-3HNT0A ¢wav
ANVL LavLS o

W .
s .
"N3D0UAAH

- 002

L 001 -

- 009

971-LHOIIN 3718YHVAHO)

FIGURE D —21

D-32

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



REPORT MDC E0298

HIGH PRESSURE APS

SUBTASK B

12 FEBRUARY 1971

AdYWWNS NDIS3IA J9VHOLS INVTT3d0dd SdV

1N30¥3d
6'96 6'96 b'66 6’16 b'66 £'86 ‘AONII21443 NOISTNdX3
£0'ST | 88°€ PevT | €9 bevT | 8°€ 93$/471'31vY4 NOILOVYLX3
1 I £ b £ ¥ STINNV HO "ON
STINNVHO NIFHOS$ NOILISINOIY LNY113d0Yd
/N ¥/N  [TTVM'NI 0T0°0 ‘4T LINVIO "NI S2T'0 — HNIgNL
V/N V/N (%0°N1 100°0°%H NI 500°0) 1104 WANIKNTY aNOYHS
wN | N - | 1w - 89'T NH/81'ILVY INIA
~——3INON LN3A CH HNIT009
- 8'0 160 | 2t°0/89°0| L6°0 | 2t°0/89°0 "NI ‘SSINNIIHL
INON | Wvod4 IdH  |Wy04/idH| IdH |WvO0d/IdH NOILY TNSNI
WANINNTY [81-6122 IVIYI LYW
62 801 GEE | 8T Z€€ 6¥h1 eL4 ‘IWNTOA
INYL LNY113d0 ¥d
0¢ 62 0¢ 62 0¢ 74 ¥z NI/487'34NSS34d A¥IAITG
(¢0) 291 ANV (CH) L€ do ‘JUNLYYIWIL IOVYOLS
000€ ¥z NI/487'34N$S34d IOVHOLS
WNIT3H 0109 NOILYZI¥NSSIUd
20 ZH %0 ¢y ¢0 4T
4315008 J 4311940 4 4311940

FIGURE D~-22

b-33

MCDCOCRIRELL DOUGLAS ASTRONAUTICS COMPANY =~ EAST



HIGH PRESSURE APS REPORT MDC E0298
SUBTASK B 12 FEBRUARY 1971

Figure D-23 illustrates the tank assembly. Temperature of the cooling shroud is
maintained by a continuous hydrogen vent. LH2 is extracted for cooling, expanded,
and subcooled 7°R, then routed to the shroud, tank supports, and penetrations, where
it vaporizes and absorbs tank heat leak. Thermal vent requirements are shown in
Figure D-24. The fiberglass outer shell serves as an environmental shield for the
tank thermal insulation system. On the ground, a constant purge of GN2 provides an
inert atmosphere surrounding the HPI protecting it against contamination and cor-
rosion. On orbit, the fiberglass shell is vented to vacuum, enabling the HPI to
function as an evacuated radiation shield. On reentry either helium (HZ) or nitro-
gen is purged through the cavity between the outer shell and the tank to prevent

the shell from collapsing and to prevent atmospheric contamination of the HPI.
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(e)

(d)

(e)
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D-2. CONDITIONER ASSEMBLY

A preliminary conditioner tradeoff study was performed in Subtask A to deter-
mine baseline configurations for each candidate APS concept so that comparisons
could be performed on a consistent basis. These comparisons led to selection of a
turbopump APS using 3500°R gas generators for propellant conditioning for Subtask B
preliminary design. Preliminary design effort showed the selected approach to be
impractical, and the concept was subsequently changed. This appendix describes
the conditioner preliminary design effort leading to the selected conditioner
concept shown in Figure D-25.

D-2.1 Conditioner Evaluation -~ During the initial part of Subtask B, a more

indepth analysis of the baseline Subtask A conditioning concept (Figure D-26) was
conducted to balance pump power required with the turbine power available over

the complete range of operating conditions. In this analysis, updated turbine and
pump component efficiencies were considered. Results of this initial analysis are
presented in Figure D-27, which compares the turbine efficiency necessary for a
power balance with estimated available turbine performance (reflecting reasonable
turbopump design practices). Results show that, on the hydrogen side, turbine
power output could not be matched to pump power requirements with realistic
turbine and pump efficiencies. On the oxygen side, sufficient turbine power was
available to drive the pump.

Analysis was conducted to determine modifications necessary in the Subtask A
baseline assembly to provide hydrogen turbopump power balance. This analysis
investigated ways both to lower pump power requirement, and/or to increase turbine
power output. Pump power requirements can be reduced by lowering thruster chamber
pressure or accumulator blowdown pressure ratio, since both affect pump discharge
pressure requirements. Turbine power output could be increased by raising turbine
pressure ratio or gas generator combustion temperature (thereby increasing assembly
bypass and turbine flow rates). Figure D-28 illustrates the level to which
thruster chamber pressure would need to be lowered to obtain achievable hydrogen
turbopump efficiencies. As shown, a chamber pressure of approximately 300 lbf/inza
(200 lbf/in2 lower than the baseline) would provide turbopump power balance at
reasonable turbine efficiencies and pressure ratios. Figure D-29 shows effect of

lower gas generator combustion temperature (more gas flow through the turbine).
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TURBOPUMP APS SCHEMATIC

FIGURE D-25
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As illustrated, gas generator combustion temperature of 2000°R would provide
turbopump power balance with low efficiencies and pressure ratios, while allowing
Subtask A baseline thruster chamber pressure (500 1bf/in2a) to be maintained.

To ensure minimum weight, it was clear that the conditioner concept selection
should be reviewed in depth, considering factors not treated in Subtask A; there-
fore, a number of alternate conditioning assembly approaches, including the alter-
nates considered in the Subtask A study, were evaluated. Approaches are shown
schematically in Figure D-30. All alternate concepts were evaluated to define
their optimum operating point over a range of chamber pressures and conditioning
temperatures. Conditioning temperatures below the Subtask A baseline were
considered, since, with a regenerative cooled thruster, a lower propellant
conditioning temperature would be acceptable because of temperature rise through
the regenerative thruster jacket.

Concept Description — Concepts A through E of Figure D-30 represent Subtask A

baseline design variations. Concept A is the Subtask A baseline design used as

a reference for concept weight comparison. Concept B is the Subtask A baseline
design, but with chamber pressure reduced sufficiently to allow turbopump power
balance. Concepts C and D are variations of a design which provide for turbopump
power balance by changes in both gas generator combustion temperature and thruster
chamber pressure., Lower gas generator combustion temperatures increase subsystem
bypass flow, thus providing increased available turbine power. This effect is
shown in Figure D-29, which illustrates turbine efficiency requirements at

various gas generator temperatures. Concept E is the same as D, except that an
active propulsive vent is used to provide overall increased subsystem performance.
Subsystem weight is lower, due to the impulse contributed by the active vent.
Analysis of vent impulse contribution was based upon one-dimensional chemical
equilibrium calculations, using a vent specific impulse equal to 95 percent of
theoretical.

Concept F 1s a modification of baseline design, using two heat exchangers.
Turbine power is extracted at conditioning cycle mid-point. This provides the
turbine with gas at higher operating temperature; the resulting increased turbine
power available provides a significant alleviation of the turbine efficiency
necessary for subsystem operation. This concept would be used with a 3500°R gas

generator and still provide turbopump power balance at the Subtask A baseline
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chamber pressure of 500 1bf/in2a. Thus, with the exception of the weight of an
additional heat e#changer, this assembly provides the same overall subsystem
weight as the Subtask A baseline; however, this concept is a more complicated
design and is more difficult to achieve from a control (and possibly from a
technology) standpoint.

Concept G is a baseline variation which uses a 2000°R gas generator in con-
junction with a secondary burn heat exchanger. Sufficient flow is directed
through the 2000°R gas generator to power the turbopump assembly. Turbine exhaust
is directed to the secondary burn gas generator, where additional oxygen is
added to produce additional heat release for propellant conditioning. Sufficient
oxygen is added to the reburn heat exchanger to provide an overall mixture ratio
of 2.0 for the bypass flow. This results in an equivalent conditioner combustion
temperature of 3500°R, making this concept similar in total available energy to
the 3500°R single Subtask A concept gas generator.

Concepts H and I use conditioned propellant from the heat exchanger instead
of gas generator products to drive the turbopump assembly. Thus, turbines are
cold, and resultant heat flux to the pump is reduced. In this assembly, turbine
pressure ratio 1s equal to the difference in pump discharge pressure and accumu-
lator pressure. Prior to pump spin-up, no propellant flow or pressure head is
available for the turbine. Therefore, an additional source of power is required
to start the assembly. This was provided by supplying the assembly with secondary
accumulators which would "blowdown'" in order to.supply flow and pressure to the
turbine during startup. In Concept H, the secondary accumulator is upstream
of the turbine and is recharged to pump outlet pressure (turbine inlet pressure)
as the turbopump comes up to operating speed. In Concept I, the secondary
accumulator is valved to the upstream and downstream side of the turbine. 1In
this manner, the start accumulator is recharged to the same pressure as the main
accumulator (turbine discharge pressure). These assemblies were evaluated to
determine what levels of pump discharge pressure and accumulator pressures would
be required to provide sufficient turbine power for assembly matching. Figure D-31
presents results of this analysis for the hydrogen side of the assembly and shows
that these assemblies could be operated at realistic pump and accumulator pressures.

Further, the design point for this concept is ptresented in Figure D-32. This
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assembly would require essentially the same bypass flow as the 3500°R gas
generator baseline subsystem; however, additional weight would be incurred for
two reasons:
(1) the subsystem chamber pressure is relatively low
(2) redundant start accumulators are required to ensure that the subsystem
can be started should start accumulator pressure decay due to component
failure.

Analysis of Alternate Concepts — The basic approach was to develop APS weight

sensitivities as a function of chamber pressure and hydrogen conditioning tempera-
ture over a range of gas generator combustion temperaturés for Concepts A through
D, and G. Then, using turbine and pump efficiencies of 52 percent and 57 percent,
allowable operating conditions were established. A turbine pressure ratio limit
of 25:1 was imposed for these analyses, because increasing turbine pressure ratio
above 25:1 does not provide any significant increase in turbine power. Examples
of this analytical results are presented for Concepts A through D in Figures D-33
and D-34, which show optimum chamber pressure and conditioning temperature for a
given gas generator combustion temperature. In Concept E, optimum chamber pres-
sure and conditioning temperature of Concept D were used and the effect of provi-
ding an active propulsive vent was defined. The dual heat exchanger, Concept E,
was evaluated to define the effect of providing an additional heat exchanger to
the Subtask A concept. Cold turbine concepts H and I investigated the effect of
using a typical engine expander cycle.

Comparison of Concepts -~ The above concepts were evaluated considering APS

weight, flexibility to component performance, and technology requirements.

Figure D-35 shows the APS weight for the various concepts compared to Subtask A,
the concept design points and technical considerations. Based upon data shown

in Figure D-35, a revised baseline conditioning assembly schematic (Concept G)

was selected. The revised concept employs the 2000°R gas generator in conjunction
with the reburn heat exchanger operating at an overall conditioner mixture of 2:1.
This approach offers low overall APS weight, reasonable technology requirements,
and low sensitivity to subsequent design changes; therefore, this assembly was

used as a baseline for all subsequent Subtask B effort. Further baseline
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optimization, such as increased reburn mixture ratio, and control optimization,
was performed to define fully the design which would provide minimum overall
subsystem weight. This optimization is provided in the following section.

D-2.2 Conditioner Assembly Control - Conditioner operation is begun and

ended by accumulator pressure sensors. Accumulators operate in a blowdown mode
from a maximum accumulator pressure (Pmax) to a minimum accumulator pressure
(Pmin). During thruster operation, accumulators blowdown to a design switching
pressure. At this pressure, the conditioner assembly is signaled on; it then
supplies additional propellant for accumulator recharge. During lengthy steady-
state firing, the conditioner assembly must supply sufficient propellant flow to
the accumulator to maintain minimum accumulator pressure. When thruster flow
ends, the conditioner assembly recharges the accumulator to Pmax condition and is
signaled off. Thus, APS operation requires that the conditioner assembly be
sized and controlled to provide maximum steady-state thruster flow at minimum
accumulator pressure. The conditioner assembly also must provide maximum pressure
capability for accumulator recharge. Controls and control logic required to meet
these requirements depend upon the manner in which the conditioner assembly is
designed and operated.

Conditioner Assembly Control Options ~ The conditioner assembly consists of

turbopump, heat exchanger, and gas generator. Two basic approaches to assembly
control are possible. From design and control standpoints, the first of these,
Concept A, (Figure D-36) is the simplest. In this concept, maximum flow and
pressure are maintained within the heat exchanger during all phases of operation.
This is accomplished by using a cavitating venturi at the pump outlet and a sonic
diffuser at the heat exchanger outlet. Figure D~37 illustrates the operating
point on the pump map. The second approach, concept B, is more difficult from
both design and control standpoints, since assembly operating conditions vary
during accumulator recharge. A schematic of this concept is shown in Figure D-36
and Figure D-37 shows its operation on a pump map. As illustrated, increase in
pump head required during accumulator recharge for control concept B can be
implemented two ways:
(1) constant pump power can be maintained as the head rises by decreasing
propellant flow (operation along line HP])
(2) constant propellant flow can be maintained by increasing turbine power
as the head rises.

For the constant pump power control approach, since propellant flow within the
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heat exchanger is decreasing during accumulator recharge, oxygen added for reburn
in the heat exchanger (and thus the heat addition) -must be controlled to prevent
heat exchanger overheating. For the constant pump flow control approach (since
pump power requirements are increasing proportionally to accumulator pressure)
the turbine must be throttled to provide additional power during recharge.

With concept A, control is possible with passive components, whereas both
concept B approaches require active control components. Therefore, concept A
would be the best approach from design and controls standpoints; however, concept B
results in lower overall APS weight, since it can operate at a lower bypass flow
during periods of continuous usage, or at a higher chamber pressure for the same
bypass flow.

Conditioner Assembly Operation and Weight Analysis — Analysis of concept A

operation is limited to evaluation of power balance between pump and turbine at a
single design point corresponding to maximum turbopump efficiencies. As shown in
Figure D-37, the two concept B approaches required consideration of a range of
turbopump efficiencies in order to ensure proper accumulator recharging.

Under ideal conditions, the two concept B approaches would be designed for
maximum efficiency (52 percent) at the steady-state condition to minimize steady-
state bypass requirements; however, preliminary analysis showed that the constant
power approach would not recharge the accumulator because the pump efficiency
would begin to decrease as pump head increased above minimum. This reduction
in efficiency was sufficient to cause pump power to increase above available
turbine power (see Figure D-38). To remedy this operational problem, the pump
was designed to operate below maximum efficiency at the steady-state condition.
This allowed the pump to take advantage of increasing efficiency during recharge
(see Figure D-38) and to operate at higher average efficiency, thus allowing
recharge with the available turbine power. This approach results in increased
bypass flow due to reduced pump efficiency during steady-state operation.

Analysis of the concept B constant pump flow approach showed that increased
turbine power was ﬁeeded during accumulator recharge because of increased pump
head. This additional turbine power would necessitate a significant increase in
turbine flow, since turbine pressure ratio, inlet temperature, and efficiencies
were at maximum. Increased turbine flow could be realized by changes to either
turbine nozzle flow area or to inlet pressure, Changing flow area was unattrac-

tive because it compromised turbine design and efficiency. However, increased
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inlet pressure could be obtained either by operating gas generator and turbine
directly from the accumulator rather than from the regulator or by operating the
gas generator in a throttled condition at the steady-state design point. With
the direct accumulator feed approach, the flow to the turbine would increase as
the accumulator was recharged. The method was judged impractical, since both
oxygen and hydrogen accumulators would have to recharge and decay simultaneously
in order to have sufficient pressure available.

The influence of the conditioner control concept upon total subsystem
weight is largely measured by its effect on total bypass flow for turbopump
power and heat exchanger enmergy balance. Pump power required is defined by
accumulator pressure, which is dependent, in turn, on thruster chamber pressure.
Concept A operates in a steady-state mode at maximum accumulator pressure (Pmax)’
while concept B operates in a steady-state mode at minimum accumulator (Pmin)
pressure. Thus, for selected chamber pressure, concept B will result in reduced
overall bypass flow, because its pump power requirement is lower at steady-state
design conditions. This lower bypass flow reduces APS weight, since it reduces
propellant and storage tank weight. An alternative is to use the lower pump
head characteristic of concept B to reduce hardware weights, while keeping the
bypass the same as that of concept A. This can be accomplished by increasing
concept B chamber and accumulator pressures at steady-state design conditions
until the minimum pressure is the same as the maximum accumulator pressure for
concept A. At this point, the bypass flow of the two systems is the same. This
results in the same APS storage weight (propellant and tankage) for both concepts,
but a reduced inert weight (lower component weights) for concept B because of
higher chamber pressure. Both lower bypass and lower inert weight approaches
yield a concept B weight advantage.

D~2.3 Control Concept Selection - The selected baseline conditioner uses a

2000°R gas generator to power the turbopump assembly. Turbine exhaust is directed
to the reburn heat exchanger where sufficient oxygen is added and reburned to
provide the energy necessary for propellant conditioning. Conditioner concept
comparison analysis of Section D-2.1 limited the reburn mixture ratio

to provide an equivalent overall combustion temperature of 3500°R. A higher
mixture ratio and the accompanying larger heat release can reduce the bypass flow
required for propellant conditioning; therefore, the optimization of the baseline

conditioner considered mixture ratios greater than 2:1 and different mixture ratios

for oxygen and hydrogen.
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The overall bypass of the hydrogen conditioner assembly is dependent upon
the hydrogen turbine flow requirements, which are dictated by the propellant
conditioner and turbopump requirements. The interrelationship of these is
discussed in the following example. Figure D-39 presents the ratio of turbine-
flow to pump~flow necessary to match the pump power requirements and provide
hydrogen conditioning to 100°R. The turbine flow necessary to match the pump
requirements is presented as a function of turbine pressure ratio and chamber
pressure; the flow necessary to provide for propellant conditioning is shown as
a function of mixture ratio and chamber pressure. The intersection of the mixture
ratio and turbine pressure ratio curves represents the power match points for the
subsystem and shows the turbine flow requifed and the chamber pressure obtainable.
For example, following a constant mixture ratio curve of 2.0 shows that the
turbine flow decreases with increasing chamber pressure and turbine pressure ratio.
At higher chamber pressures and subsystem operating pressure, the enthalpy
required for propellant conditioning is slightly reduced, requiring a lower
turbine flow. Increased chamber pressure, however, requires a higher pump power.
This is provided at the lower turbine flows by utilizing higher turbine expansion
ratios, which provide a higher energy extraction from flow. Turbine expansion
ratio was limited to 25:1 in order to have a realistic design pressure in the
heat exchanger located downstream of the turbine. As shown in Figure D-39, once
this limit is reached, the turbine flow is controlled by the pump power require-
ments such that further increases in chamber pressure results in higher flow
requirements. The remaining portion of the conditioner flow, the oxidizer to
the reburn gas generator, is also influenced by turbine flow. With higher flows
to the propellant conditioner, the energy required from the reburn heat exchanger
is reduced, thus the reburn mixture ratio is lower.

The overall conditioning bypass flow is a function of the turbine flow and
reburn mixture ratio. Figure D-40 presents the conditiomer bypass flow as a
function of chamber pressure (turbine flow) and hydrogen conditioning temperature
(reburn flow) for a mixture ratio of 2.0, and for a range of mixture ratios at
the turbine expansion ratio limit of 25:1. This figure shows that the bypass flow
requirement, and, thus, the subsystem propellant weight, continuously decreases
with increasing conditioner mixture ratio and decreasing chamber pressure. The
inert weight of the subsystem, in general, increases with decreasing chamber

pressure; therefore, in order to minimize subsystem weight, the influences of
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chamber pressure upon the bypass flow requirements and the inert weights were
combined to allow a total subsystem weight comparison. The effect of conditioner
mixture ratio and thruster chamber pressure on overall subsystem weight is pre-
sented in Figure D-41. As shown, the conditioner concept optimizes at a chamber
pressure of approximately 500 lbf/inza. Figure D-41 also compares the baseline
reburn conditioner concept with a simpler no-reburn conditioner concept. No
reburn, i.e., no oxygen addition to the hydrogen heat exchanger, results in a
subsystem weight not significantly greater than the minimum weight approach.

The no-reburn concept is more sensitive to hydrogen conditioning temperature.
This effect is presented in Figure D-42, which shows- the effect of hydrogen
conditioning temperature on overall subsyétem weight., As shown, a temperature
above 100°R results in a relatively large weight penalty for the no-reburn design.
Following a review of the results discussed above (in particular the sensitivity
to conditioning temperature) the judgment was made to eliminate the no-reburn
concept from further consideration. 1In order for the concept to be weight
competitive, a 100°R conditioner temperature would be required making

the development of the regenerative engine mandatory to the exclusion of film
cooled approaches. Similarly, a judgment was made to condition hydrogen to 200°R
in the selected reburn heat exchanger approach. This induces a weight penalty
into the APS, but offers less technology risk and provides the capability of using
either regenerative or film cooled APS thrusters.

The above type of analytical approach was used to evaluate all subsystem
control concepts described in the previous section, to determine the relative
welght advantage of each. In this evaluation, hydrogen conditioning temperature
was 200°R and turbine pressure ratio was limited to 25 to 1 and/or the turbine
exit pressure was limited to 30 1bf/in2a minimum, to facilitate heat exchanger
ground testing. Overall conditioner mixture ratio was limited to 2.7 to 1. This
mixture ratio resulted in a reasonable combustion temperature in the secondary
burn gas generator and no significant weight advantage was realized at greater
mixture ratdios.

Figure D-43 presents the results of this analysis and shows the subsystem
weight vs chamber pressure for control concept A and control concept B using two
implementation approaches. At the optimum conditions, the constant power approach
of concept B has a 350 1b weight advantage at chamber pressure of 500 lbf/inza,
while the constant flow approach has a 450 1b weight advantage over concept A.
Thus, the constant flow approach is the best approach on a weight basis. However,
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the control technology involved is more difficult than that for the constant power
approach. In addition, implementation of Concept B2 may require a lower chamber
pressure than that shown because of throttling range requirements and thus lose
its weight advantage. Concept B, implemented with constant power for recharge,

was thus selected as the APS baseline.
This subsystem optimized at a chamber pressure of 500 1bf/in2a and the over-

all mixture ratios at this condition were 2,55 and 2.69 for hydrogen and oxygen

heat exchangers, respectively.
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D-3. TURBOPUMP EVALUATION

The APS requires turbopumps to deliver propellant from low pressure cryogenic
supply tanks to a conditioner assembly at the pressure required for subsystem
operation. The pump power required to perform this function is provided from
products of a 2000°R gas generator used in a staged turbine. Pump power and
turbine flow requirements are significantly affected by turbopump performance.
Therefore, to minimize turbine flow and ensure optimum APS design, it was neces-

sary to evaluate turbopump performance in detail.

D~3.1 Turbopump Design - The turbopumps were designed to meet two different
subsystem operation modes: .

(1) provide flow and pressure required to maintain minimum accumulator

| pressure during steady state subsystem operation (long steady state
thruster firings)

(2) provide sufficient flow and pressure to recharge subsystem accumu-
lators to their maximum pressure. Prerequisites for these APS
operational requirements are presented in Figure D-44.

As shown in Figure D-44 pump output pressure varies from approximately 1000
lbf/inza for steady state operation to approximately 2000 1bf/inza at the end of
accumulator recharge. These two conditions are satisfied by permitting turbopump
shaft speed to increase, and flow to decrease, as the accumulator is recharged.
During recharge, gas generator flow and power from the turbine are constant, except
for a slight increase in turbine power due to an efficiency increase with shaft
speed. Turbopumps can be (and have been) designed to operate over this broad
operating range; however, their design must incorporate provision for variations
in pump imposed axial and radial thrust.

Baseline designs selected for oxygen and hydrogen units are presented in
Figures D-45 and D-46 respectively. Axial thrust forces in these designs are
minimized by using a modified Barsky impeller configuration. Figure D-47 presents
a summary of overall turbopump design philosophy.

The LO2 turbopump consists of a single stage pump and a 2-stage, pressure
compounded, axial flow turbine. Pump impeller and turbine rotors are mounted on
a common shaft, supported by LO2 cooled/lubricated rolling element bearings.
Bearing cooling/lubricating flow is tapped from the high pressure pump discharge,

directed through the bearing, and reintroduced to the mainstream flow in a low
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pressure region at the impeller backside hub. The magnitude of the bearing coolant
flow (5 percent allocated) is controlled by hydrostatic seals. The floating
feature of hydrostatic seals eliminates the rub hazard normally associated with a
fixed-flow control labyrinth. The interpropellant seal, which seals LO2 from the
fuel-rich hot gases of the turbine, uses a triple vent.

The fuel turbopump is similar to the LO2 turbopump. Two pump stages are used
to develop required pressure, while three pressure compounded, axial flow stages
are used in the turbine. Pump impellers and turbine rotors are mounted on a common
shaft, again supported by LH2 cooled/lubricated roller element bearings. Hydro-
static shaft riding seals are used to control bearing coolant flow allocation of
5 percent. The fuel turbopump does not require an interpropellant seal to separate
the propellant from hot turbine gas, since LH2 is nonreactive with the fuel-rich
turbine gases. Liquid hydrogen flow from the turbine and bearing to the turbine
is minimized by the use of a hydrostatic seal.

The turbopump fuel and oxidizer pump volumes are 10.58 and 6.05-in3, respec-—
tively from the plane of the suction flange to the plane of the discharge flange.

The turbopump has been designed for a life of 100 missions with 50 starts
required per mission, or 5000 cycles. Based on the thermal shock duty require-
ments of the turbine rotor, cycle fatigue life is predicted to be 6000 cycles.

The turbine blading for both the fuel and oxidizer turbopump turbines is the
axial flow impulse type. The blade design is symmetrical, utilizing neither
taper or twist) with the inlet and outlet angles equal to 21 degrees.

Both the fuel and oxidizer pump discharge volutes are designed for a proof
pressure capability of 150% of maximum working pressure, and a burst pressure of
200% of proof. The hydrogen pump is designed to operate at 53,330 RPM, and the
oxygen pump at 21,337 RPM. First shaft critical speeds for the hydrogen and
oxygen pumps are 32,151 RPM and 33,550 RPM, respectively. This represents opera-
tion, with predicted bearing freedom, at 165% of critical for the fuel pump and
63.5% of critical for the oxidizer pump.

Both the fuel and oxidizer pump shaft support bearings operate at bearing DN
values of 1.5 x 106.

D-3.2 Predicted Performance - Predicted pump head/flow, efficiency, power,

and torque characteristics are shown in a normalized format in Figure D-48. Since

the stage speclfic speeds of the LO2 and LH2 pump are nearly equal, their normalized
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characteristics will be the same. These normalized pump characteristics were used
in turbopump analysis, and resulted in head/flow characteristics for values of con-
stant shaft speed (shown in Figures D-49 and D-50 for the oxidizer and fuel turbo-
pumps, respectively). These show pump operating characteristics during accumulator
charge from steady state operating point to maximum accumulator pressure. Dotted
lines shown correspond to pump power requirements matched to delivered turbine
power,

The lines of Figures D-49 and D-50 show a power balance using a turbopump
" designed for reduced effic%ency at the steady state design point. An efficiency
less than the predicted maximum available was used in APS design to provide a
design margin, and to reduce heat exchanger flow excursions. A summary of turbo-
pump operating conditions is presented in Figures D-51 an& D-52 for pumps which
were designed for maximum efficiency at maximum output pressure.

Pump design point efficiency is primarily a function of design specific speed

I_13/4

per stage (NS =N Q ) and volume flow Q. A 2-stage, liquid hydrogen pump

was used to increase pump specific speed and, in turn, to increase pump efficiency.
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Turbine predicted efficiencies are presented in Figure D-53 as a function of
overall velocity ratio. Figure D=54 correlates actual and predicted turbine
efficiencies as a function of stage velocity ratio. This curve shows that effi-
ciencies predicted for the APS at the steady state operating condition are well
within the range of experience. During recharge, efficiencies would be higher
(as shown in the previous figure) due to increased turbopump shaft speed.

Turbine inlet temperature of 2000°R was selected for use in APS design. This
is compatible with state-of-the-art turbine materials capability.  Since no signi-
ficant increase in power is obtained above this temperature, and efficiency is
essentially unaffected, higher temperatures are not warranted. Figure D-55 presents
typical weights for the hydrogen turbopump assemblies.

D-3.3 Technology Evaluation - Criticai turbopump operating parameters and

current demonstrated state-of-the—~art pertaining to these parameters are given in
Figure D-56., It can be seen that all design requifements can be achieved with
existing technology except for the requirement of rapid shaft spin-up rates with
rolling element bearings. This bearing design was selected to permit use of pro-
pellant-lubricated bearings and accommodate low lubricity of propellants; however,
extension of current cryo-lubed bearing spin-up capability to the APS requirements
appear feasible, based on current operational .capability of air cooled (graphite
cage pockets) bearings used in an aircraft application. These bearings provide
150K rpm/sec spin-up and a cycle life in excess of 25,000 starts. The APS requires
the hydrogen turbopump to spin up in 0.25 to 0.5 sec, which results in a shaft
acceleration rate on the order of 100K to 200K rpm/sec (current state-of-the-art

technology is 40K rpm/sec).

D-3.4 Turbopump Cooling — It is essential to pump design and operation that
the propellants at the pump inlet be in a liquid state to prevent pump cavitation
and overspeed. This requirement makes 1t necessary for the pump to be at the
temperatures of the liquid to prevent vaporization. This could be achieved by
cooling the pump prior to each pump operational cycle, or by maintaining the pump
in a "chilled" condition with active cooling. Cooling the pump prior to each pump
cycle would require:

(1) additional controls to perform the chilldown

(2) additional propellant losses, since propellants would be used for

chilldown 4
(3) increases in conditioner lag time with resultant increases in accumulator

size.
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Cooling the pump once and then keeping it cool would require an insulated enclosure
around the pump, thermal isolation of the pump from the turbine, and continuous
active cooling.

Continuous cooling was the approach selected. The weight penalty associated
with the added enclosure, and coolant propellant losses, are much less than the
weight penalty associated with chilldown for each cycle. This advantage occurs
because the amount of liquid propellant required for continuous pump cooling is
small when compared with increases in accumulator weight required by the long
response time for chilldown of a hot pump prior to each cycle.

Design Description - The major areas of interest in turbopump cooling design

are enclosure active cooling, and turbine/pump isolation. The heat transfer model
of the turbopump enclosure used to evaluate active cooling requirements is shown
in Figure D-57 with the major heat transfer mechanisms (R for radiation, C for
conduction) identified for the various sections. Major heat transfer contributions
are environmental radiation, heat conducted by the pump outlet lines, and heat
conducted from the turbine. |

The pump enclosure is an insulated aluminum shroud, employing a multilayer
insulation (MLI) of about 1 in thickness to isolate thermally the pump from the
environment. The active cooling scheme kéeps;the enclosure cool by venting liquid
hydrogen through a tubular heat exchanger on the surface of the enclosure. Vented
hydrogen is then passed through the turbopump shaft housing to intercept heat con-
ducted from the turbine to ensure cooling of the pump itself during non-use periods.

Isolation of the pump from the hot turbine is accomplished by providing a
heat short from the turbine to the vehicle structure, which preferentially conducts
heat to the structure rather than to the pump. When combined with the active
cooling of the shaft and its housing, conduction of turbine heat to the pump is
minimal. To protect the pump enclosure from radiation from the structure, a 1 in
layer of Micro-Quartz (a Johns Manville quartz fiber insulation) was added to the
pump side of the support structufe.

Analysis/Results - Active cooling requirements were evaluated for a system

composed of 3 pumps/enclosures under operating conditions, with one turbopump
operating and two turbines at ambient conditions. Results are presented in Figure
D~58. In order to provide a conservative coolant estimate, the surrounding environ-

ment and structure were assumed to be at 600°R.
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A nominal performance of 0.7 Btu/hr/ft2 was assumed for the MLI protecting
the pump enclosure. With radiation from a 600°R environment to the 6.3 ft2 en—
closure, 13 Btu/hr was calculated for both hydrogen and oxygen systems.

Heat input to the pump from the turbine was substantially greater than from
any other source. The mean turbine temperature used for evaluating the heat leak
from the operating turbine was assumed to be 1500°R. The total heat leak evalu-
ation reflects the leak for one operating and two ambient (600°R) temperature
turbines. The heat leak from the hot turbine was 45 Btu/hr through the shaft and
30 Btu/hr through the housing on the hydrogen side, and 39 Btu/hr and 18 Btu/hr on
the oxygen side. The total leak from the two ambient temperature turbines was
44 Btu/hr and 31 Btu/hr, for hydrogen and oxygen respectively. The total heat leak
from all turbines is thus 137 Btu/hr for the hydrogen and 104.2 Btu/hr for the
oxygen.

For the inactive turbopumps, one line of 1-1/2 in diameter with 0.055 in walls
was assumed to be connected into each enclosure at a distance of 3 ft from a 600°R
source. Conduction leaks of approximately 5 Btu/hr-line for the hydrogen line,
and 4 Btu/hr—line for the oxygen line were obtained. 1In addition, radiative heat-
ing from the surroundings delivered to the enclosure by means of the line was
estimated to be 1 Btu/hr~line.

The total heat transferred to the pump during operation is 157.5 Btu/hr for
the hydrogen and 123.2 Btu/hr for the oxygen. The propellant required to cool
the turbopumps is shown in Appendix D-1 and is 0.54 and 0.75 pounds per hour for
the hydrogen and oxygen turbopumps respectively. The oxygen turbopumps are
cooled with the efflux from the thermodynamic vent after cooling of the hydrogen
part of the subsystem and does not represent é weight penality. For a three day
mission the total cooling hydrogen required for the hydrogen turbopump is ap-
proximately 40 pounds. The total propellant loss for cooling the pumps over the
entire mission does not represent a high penalty.

Turbine Cool-Down - Heat flux, and thus coolant requirements, after the tur-

bine cools to ambient conditions is reduced by approximately 36 percent. To esti-
mate the time for the hot turbine to cool to an ambient temperature, calculations

have been performed for cooling by radiation and conduction. These show that the

heat short designed to minimize heat flow from turbine to pump during operation

will cool the turbine in about one hour.
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D-4. HEAT EXCHANGER

The APS thruster assemblies require that propellant be conditioned to approx-~
imately 200°R. This requirement is provided by heat exchanger assemblies, which
vaporize and superheat cryogenic liquid propeliants. During Subtask A, a simple,
counterflow, tube-in-shell heat exchanger design was selected. This concept used
. products directly from a 3500°R gas generator to provide the energy required for
conditioning. In Subtask B, the propellant conditioner assembly was reevaluated,
revised, and a new baseline concept established. 1In this revised concept, products
of a 2000°R gas generator are used first to drive the turbopump, then directed to
the heat exchanger where additional oxygen is added. They are reburned to provide
the energy for propellant conditioning. Since design requirements of this reburn
heat exchanger were significantly different from those of the Subtask A unit, an
evaluation was conducted to define design and performance. The following paragraphs
discuss heat exchanger requirements, alternate reburn heat exchanger concepts, the

selected baseline concept, and its design.

D-4.1 Design Concept Section - On the basis of preliminary concept appraisals

and overall conditioner assembly performance requirements, the following general
heat exchanger characteristics were required:

(1) combustion of fuel-rich turbine exhaust gases

(2) hot side temperatures to approximately 4200°R

(3) high cycle life with hot to cold side temperature gradients in excess

of 4000°R

(4) cold side propellant flow and pressure controlled on the discharge side

of the heat exchanger by accumulator pressure.
A summary of heat exchanger design conditions is presented in Figure D-59.

Three primary types of heat exchangers were considered. These concepts are
shown schematically in Figure D-60, and their operation is presented in Figure D-61.
Concept A uses multistage injection of oxidizer into the heat exchanger. At the
first oxygen injection stage, an igniter is used., The need for an igniter is elimi-
nated at all subsequent stages by preventing the exhaust gases from cooling below
autoignition level. This is accomplished by controlling the hot gas between an upper
value, determined by conventional material constraints, (approximately 2000°R) and a
lower limit, established by the autoignition level, (approximately 1600°R). In
this concept, enthalpy for conditioning is provided with minimal stress on materials
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technology. However, a large number of oxygen stages is required.

Concept B is similar to the previous approach. It allows gas cooling to
approximately 90Q°R, thereby minimizing the number of oxygen stages required. As
shown in Figure ﬁ~61, it does require an igniter source at each stage, since the
gas falls below the autoignition level. This concept provides the benefit of mini-
mizing thermal enviromment (gas temperatures less than 2000°R) at the expense of
additional controls required for reignition at each oxygen stage.

Concept C features a single re-ignition cycle, accomplished in the heat exchan-
ger. This concept introduces a more difficult design since it is required to contain
and effectively utilize high temperature gases. It was considered the most desira-
ble, however, since it minimizes the re-ignition and confrols complexity associated
with the reburn heat exchanger. Thus, it was selected as the baseline heat exchan-
ger éoncept for the high pressure APS.

Heat exchanger design is illustrated in Figure D-62. The concept is based on
application of injector plate fabrication technology developed for staged combus-
tion engine cycles. A platelet construction technique provides controlled heat
transfer coefficients for the hot gas and the cold propellant side of each plate.

All propellant to be conditioned enters the reburn heat exchanger in the base,
and flows up the outside of the shell and up through the centers of the plate assem-
blies. The propellant is turned at the top of the shell and flows down along the
inside surface. The propellant flowing up the inside of the plates is split at the
top and flows down along the outside passages of the plates., The heat is trans-
ferred from the parallel flowing hot gas to the propellant in both the plates and
shell. The propellant from both the shell and the plates is collected at the
bottom of the heat exchanger and directed to the accumulators.

An oxygen distribution injector is provided ahead ofvthe plates to uniformly
distribute GOZ' The ignition source for the turbine exhaust gases and the GO2 is
a catalytic igniter in the GO2 manifold as shown in Figure D-62. Igniting in the
GO2 distribution manifold provides a short duration of high mixture ratio hot gas
for ignition. This approach was taken because a major developmental concern rests
in providing an ignition technique to allow uniform and consistent ignition between
each of the closely spaced plate assemblies. The catalytic igniter is turned off
after sufficient time has elapsed to achieve uniform combustion downstream of each
of the GO2 injectors. Requiring as it does the distribution by the GO2 injector
manifold of approximately 2500 - 3000°R hot gas for short durations, this catalytic
igniter concept requires special attention during investigation of the overall re-

ignition cycle. .D=91
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The baseline internal platelet configuration of the heat ext¢hangers is defined
in Figure D-62a. The heat exchanger performance and weights are shown in Figure
D~62b. TUsing the defined configuration,steady state performance operating maps
were defined. The hydrogen heat exchanger operating maps are shown in Figure D-62c
for a hot gas inlet (turbine discharge) pressure of 30 LBF/inZA and for a hydrogen
inlet pressure of 1045 LBF/inZA. The operating limits are defined by limiting the
wall temperature to above 500°R, and limiting the velocity at the exit to less than
sonic. A 500°R minimum wall temperature is required to preclude freezing of water
on the heat exchanger surfaces. The steady state heat exchanger operating point
for only +X thruster usage is shown in Figure D-62c(a). At this point the con-
ditioned hydrogen temperature is 250°R, the conditioning -assembly is operating at
an overall mixture ratio of 2.55 and the exhaust gas is above the condensation
limit. Increasing the thruster usage by 25% to allow attitude cogtrol usage during
+X thruster firing results in the operating map shown in Figure D-62c(b). During
the recharge cycle the hydrogen pressure will be increasing above 1045 psia and will
reach the 2000 psia shown in the performance maps defined in Figure D-62d. The
corresponding operating point is shown in Figure D-62d(a).

The operating performance maps for the oxygen heat exchangers are shown in

Figures D-62e and D-62f.
The application of the platelet injector technology for the heat exchanger is

an extension of related technologies. A platelet heat exchanger program has been
conducted, wherein plate assemblies were used to provide interpropellant heat
exchange between gaseous hydrogen at room temperature and liquid oxygen. This pro-
gram demonstrated the ability of the plate assemblies to effect sufficient heat
exchange to convert the liquid oxygen to gas. It also identified techniques for
control of the plate flow channels to achieve increased propellant side heat trans-
fer coefficients. The basic plate fabrication techniques were also demonstrated as
a part of staged combustion cycle demonstrations for several injector concepts.

D-4.2 Design Analysis ~ The large hot gas enthalpy change required in the

heat exchanger is inherently associated with a large temperature change between hot
gas inlet and outlet. At the inlet, temperatures exceed 4000°R, requiring that hot
side film coefficients be as low as possible, and corresponding cold side coeffi-
cients be as high as possible to maintain wall temperatures below their upper limit.
Opposite requirements are imposed at the outlet where hot gases are cooled to their
lowest temperature., Here it is desirable to have high hot side coefficients and

low cold side coefficients, so that the walls remain at high enough temperature to
D-93
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preclude condensation and icing of water vapor in the hot gés products. The
selected plate heat exchanger concept provides enough design flexibility to achieve
the required performance within the wall temperature constraints, because the flow
passage geometry of both hot and cold sides can be altered, as required, to control
film heat transfer rates. Figures D-63 and D-64 show predicted outer wall tempera-
tures and film coefficients as a function of axial position in hydrogen and oxygen
heat exchanger plates, respectively.

The analytical heat exchanger design characteristics were developed by start-
ing with an initial selection of passage geometry, plate size, number of plates,
and given inlet and outlet gas conditions. An iterative procedure was followed, in

which heat exchanger length and passage geometry were balanced against wall
temperature., The computerized design analysis used a one-dimensional control volume

approach; cold and hot flow passages were divided into finite increments for simul-
taneous solution of continuity, momentum, and energy equations for each section.

Plate passage geometry is presented in Figure D-65 (which shows a cross section
of a typical hydrogen plate). As shown, passage width is increased as propellant
flows down the plate. A flow area increase occurs as the fluid heats up and ex-
pands. The velocity and cold side film coefficient are maintained nearly constant
along the plate.

The corresponding ﬁot side flow geometry is the opposite. Near the hot side
inlet, plate spacing is maximized to reduce hot side film coefficient. Plate spac-
ing is reduced towards the outlet to increase the hot side film coefficient at the
exit.

A frequent problem in cryogenic heat exchangers is the occurrence of low fre-
quency flow and pressure oscillations. Unstable operation of supercritical,
cryogenic heat exchangers has been investigated under NASA-MSFC, Contract
NAS 8-21052. A simplified stability criterion was developed on'the basis
of theoretical analysis which allows evaluation of supercritical heat exchangers
for potential instability. The criterion has been compared with experimental data
and proved to be reasonably successful. It uses a steady-state analysis technique
to indicate whether operation of a given design would be inherently stable or un-—
stable. Figure D-66 shows the general classification of the effects of heat ex-
changer characteristics formulated by the criterion.

In applying these effects to the recharge transient, results are mixed, but
the over-all influence appears to be toward greater heat exchanger stability at

the higher pressures and lower flow rates as the accumulators recharge.
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L]

A stress analysis was conducted using steady state wall temperatures and a
maximum pressure of 2475 LBF/inZA, allowing for an over shoot of the design maximum

pressure. The following results were obtained.

MARGIN OF SAFETY
HYDROGEN ~ OXYGEN |HYDROGEN

FLOW. SHEAR 4.7 2.4 >10
CHANNEL ’

i STRESSES BENDING 2.2 HIGH
(KSI)

TENSION 2.2 . HIGH

§ HOT SURFACE THERMAL
STRAIN

D-4.3 Controls Requirements - Heat exchanger cold side pressures will increase,

and the flow rate decrease, during accumulator recharge. This change in flow and

pressure condition requires that heat exchanger oxygen flow rates be reduced to

provide a corresponding reduction in the total hot gas enthalpy available. Poten-
tial control concepts are shown schematically in Figure D-68. Heat exchanger inlet
and outlet temperature for each control concept are presented in Figure D-69.

For Concept A, reburn oxygen flow rate is throttled to retain a maximum hot
side temperature, and liquid flow is bypassed around the heat exchanger to maintain
minimum hot gas exit temperatures and requisite cold side outlet temperatures.

This concept is the most complex of those evaluated and provides the most precise
control of fluid temperatures and enthalpy balances.

In Concept B, heat exchanger reburn oxygen flow is throttled to retain the
desired propellant outlet temperature. The throttle could be controlled on the
basis of sensed pump discharge or accumulator pressure. This concept requires a
continuous dynamic flow control of a small quantity of gaseous oxygen.

Concept B was selected in order to limit maximum combustion temperature, and

to maintain heat exchanger outlet temperature above the condensation limit.
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D-5. GAS GENERATORS

The APS uses gas generator products to provide power for turbopump operation
and energy to the heat exchangers. Gas generators are required to have throttling
capability to maintain accumulator pressure at or near switching pressure level
during steady state operation. They must also provide increased flow and power
to the turbine during conditioner start-up. In addition, the gas generators must
maintain exhaust temperatures within limits necessary to ensure turbine blading
structural integrity.

The design conditions for these subassemblies are:

(1) a 2000°R combustion temperature

(2) flow rates of 0.44 1b/sec and 0.26 1lb/sec to the hydrogen and oxygen

turbines respectively

3 ’a nominal operating pressure of 500 1bf/inza

(4) minimum propellant inlet temperature of 200°R and 350°R, respectively

for hydrogen and oxygen. |

This appendix discusses gas generator design, controls, performance sensitiv-
ity to propellant temperatures, and critical technology areas.

D-5.1 Design - The hydrogen gas generator design selected for the APS is
shown in Figure D-70. This unit operates from gaseous hydrogen and oxygen pro-
pellants. Gaseous propellant injection has been demonstrated at chamber pressures
of 100 to 800 1bf/in2a and mixture ratios of 2 to 6; thus, it is readily adaptable
to the low mixture ratio gas generator operation. The oxygen gas generator oper-
ates similar to the hydrogen unit but is slightly different physically to accommo-
date a lower flow rate.

The gas generator design provides linked on~off valves to control the primary
propellants to the gas generator and assure proper propellant sequencing with the
spark torch igniter. A parallel flow path in both propellant circuits is pro-
vided downstream of the linked valves with throttling valves in one leg of each
parallel circuit to provide throttling by allowing additional flow resistance in
each propellant circuit.

The propellant supply lines and injector manifolding is designed to provide
propellant flow velocities of less than Mach 0.3 in the circuits up to the injector

elements. The injector proposed is an impinging coaxial element concept. The

D-103
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element provides a uniform and homogeneous hot gas flow stream down the GG barrel
and at the inlet to the turbine nozzles. The injector is fabricated of brazed
347 Stainless Steel.

An electrical spark igniter discharges and ignites a small torch flame down
the center of the injector. This igniter is similar to a demonstrated engine
electrical spark torch concept. Propellant to the electrical igniter is controlled
by the primary gas generator on-off valves.

The flow velocities selected result in propellant feed lines of 3/8 in.inter-
nal flow diameter through the linked propellant control valves (on-off) for both
the hydrogen and oxygen gas generators. The parallel bypass lines around the
flow resistance orifice are 1/4 in.flow diameter through.the throttling valves for
the hydrogen gas generator and 1/8 in.for the oxygen gas generator. These flow
circuits are sized to provide 407 greater flow capability than the flow through
the primary orificed flow path. The flow orifices are sized for the primary flow
of each gas generator. The manifold volumes for each propellant circuit from the

linked propellant control valves to the injector face are:

Manifold Volume = 3" flow length @ 3/8" I.D. + injector volume +

2.5" flow length @ 1/4" I.D. (Hydrogen GG)

2.5" flow length @ 1/8" I.D. (Oxygen GG) } + throttling valve

Injector Manifold Volumes = 2" dia - 1" dia x 1/2" thick = 1.6 cu. in.

Throttling Valve Volumes ~ 0.2 cu., in.

Each Propellant Circuit for.Hydrogen Gas Generator has 2,27 cu. in.

Each Propellant Circuit for Oxygen Gas Generator has 2.18 cu. in.

D=-104
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The injector is coupled to a subsonic chamber, having sufficient length to
ensure complete propellant reaction and uniform hot gas temperatures at the turbine
inlet. The insulated (adiabatic wall) chamber is fabricated of A286 allby.

The chamber has a cylindrical barrel with a low hot gas velocity and a sub-
sonic converging section at the exit to provide an exit Mach of 0.5.

The stress of the chamber is dependent upon the wall thickness. The wall
thickness dictates the resultant hoop stress based upon the P r relationship and

the resultant thermal stress based upon the following: t

E-+-a: Tf

3.25 k )
h .t

i

o (thermal stress)

Q1 -p) 1.5+

E = Young's modulus

a = Coefficient of Thermal Expansion

T,. = Suddenly applied film Temperature, °R
= Poisson's Ratio

73

k = thermal conductivity

h = heat transfer coefficient
t

= material thickness

Based on a 1000°R assumed temperature at the worst gradient and a subsonic
heat transfer coefficient of 7.55 x 10"4 BTU/inz—sec-°R the resultant thermal
stress for a 0.030 in.wall is 10,400 psi and for 0.050 in.wall is 16,900 psi.
These levels compare to a hoop stress level of only 8,400 psi for the 0.03 in.
wall thickness. The A286 has a yield strength of 20,000 psi at 1500°R. The
creep stress rupture of the material is 17,000 psi sustained for 60 hours at
1500°R. These levels identify that the 0.05 In.wall thickness has sufficient
design margin, however, additional thermal stress safety factor will be achieved

by utilizing a 0.030 in.wall.

D~105

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



REPORT MDC E0298

HIGH PRESSURE APS

SUBTASK B

12 FEBRUARY 1971

4O1VYINII SV Sdv

g1ZL =1HOIIM
73A37 ¥IN0d 99 ©
r WOVY9a334 T04LNOD CHY
' 0 LY INWNIIY
- - e AT L 99 e 73A37 4IN0d 99 ©
I J0YLNOD dW3L 99 ®
; (00899~ 10v IALT OL ¥YTNWIS) L1 yOYE0334 1041N0D 209 [
[ TYIINVHOIWOULITTI *NI #/1 : !
(2) IATYA ONITLLOMHL _ 2 _
i [dhaL oo
i di3l %09
' v 2 ¢ 7 i
: , H) : IATWA 1071
O
ANOV vIa 9€°0 ATGNASSY 43 LINDI i QIONT0S AVA €
(W) Vi 050 / .
Fn\ W& m.g = =
|*| 1 A -x=q) |
[
Awe vIa 120 J y i
H) v1a 00'1— ©
OLIAMNI : P ’
INIONIWI TYIXYOD %09
(2) 3014140 .
] 1 T
E (NI 8/5) JATVA
oLz 1NY113d0YdIg

FIGURE D-70

D-106

MCDONNELL DOUGIAS ASTRONAUTICS COMPANY « EAST



HIGH PRESSURE APS REPORT MDC E0298
SUBTASK B 12 FEBRUARY 1971

D-5.2 Gas Generator Controls -~ The gas generator is sequenced on with a

signal to open the linked gas generator valves and a signal to the electrical
igniter. Opening the bipropellant valve sends gaseous oxygen and hydrogen through the
igniter and the primary injector parallel flow circuits. The linked wvalve provides
added assurance of proper propellant sequencing and minimizes potential mixture
ratio variations due to valve inaccuracies., Calibrated orificés in each propellant
flow circuit between the linked bipropellant valve seats and the gas generator
injector limit gas generator operation to 807 power level. A bypass flow circuit
around each orifice, with separately activated throttling valves, allows bypassing
of additional hydrogen or oxygen around the calibrated orifices to adjust the

power level of the gas generator on demand. The oxygen throttle valve also con-
trols gas generator temperature and mixture ratio in response to gas generator
exhaust temperatures.

Throttling of the gas generator valves for power level control would occur
during major orbital maneuvers and during accumulator recharge. Before the start
of a major maneuver the gas generator power level feedback controller would be
activated to control to minimum accumulator pressure. The feedback controls would
be sequenced to allow accumulator recharge at a reduced power level when thruster
firing has terminated. ' The throttle valve is an electric torque motor actuated
design where the pneumatically balanced poppet is actuated by a torque motor driven
ball screw.

The linked bipropellant valve is shown in Figure D-70 with a piloted pneumatic
actuator; however, electrical actuation with a torque motor, motor ~ clutch, or
solenoid actuator are feasible alternatives.

D-5.3 Gas Generator Performance - Gas generator sensitivity to inlet condi-

tions is presented in Figures D-71 through D-74a for both hydrogen and oxygen units.
These figures show the sensitivity of gas generator chamber pressure and total

flow rate to inlet temperature and pressure. Combustion temperature performance

is presented in Figure D-75 for a range of mixture ratios and hydrogen inlet
temperatures, Figuré D-76 illustrates gas generator weight for various flow rates
and chamber pressures.

D-5.4 Technology Areas - The development of an on/off gas generator to pro-

vide 2000°R hot gas at a pressure level of 500 lbf/inza is a straightforward appli-
cation of APS gaseous propellant technology. The primary technology area involved

requires development of throttling control capability and closed feedback loop

analysis.
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D-6. ACCUMULATORS

Successful vehicle control requires a reliable and responsive APS. Conditioned
propellant available at all times for APS thruster operation is provided in the
APS by the use of accumulators which store the gaseous propellants until they are
required for use by the thruster assemblies. The accumulators operate in a blow-
down mode from a maximum operating pressure to a switching pressure. At the
switching pressure the conditioner assembly is actuated to re-supply conditioned
propellant to the accumulator. Under conditions of maximum APS thrust, the accumula-
tor pressure continues to decay during conditioner start~up until the eonditioner
is capable of supplying the accumulator outflow rate. A minimum accumulator pres-
sure is reached and pressure then remains essentially constant until maximum
thruster operation is terminated. The conditioner then recharges the accumulator
to its maximum pressure.

The accumulators are sized by two criteria: 1) to limit the number of condi-
tioner start-up cycles and 2) to limit pressure decay to a specified minimum
pressure level during conditioner start-up. To limit the number of conditioner
cycles, the accumulator must provide a gas storage capability, and thus total
impulse, during blowdown from its maximum to its switching pressure. The number of
conditioner cycles is therefore dependent upon the subsystem total impulse require-
ment and the total impulse storage capability during each accumulator blowdown
cycle, For a selected number of conditioner start-up cycles, the blowdown gas
mass and thus the blowdown pressure ratio (P

max
'a given accumulator volume. The second criteria defines accumulator volume, i.e.,

/PSW) required can be evaluated for

accumulator volume is sized such that, during the conditioner start-up transient,
sufficient gas is available to keep the accumulator from decaying below a minimum
pressure level. During start up, the conditiomer cannot satisfy flow requirements
with maximum thruster operation. Thus to keep the accumulator pressure from
decaying below the minimum value required for thruster operation, it is necessary
to initiate conditioner operation at a switching pressure above the minimum,
providing the additional gas mass for operation during the tramsient. The accum—
ulator volume necessary to provide this gas is dependent upon the APS total thrust
level (outflow rate), the conditioner start-up time, and the ratio of the condi-

tioner switching pressure to the accumulator minimum pressure (Psw/Pmin)'
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From the preceeding discussion it can be seen that accumulator sizing is related

to several factors, total thrust level, total impulse requirement, %%3%?35 and
Pawi
Fﬁ%ﬁEEE’ the number of cycles, and conditioner start up time. The total system

thrust impulse requirements are fixed items, defined by vehicle requirements. The
analyses presented in this section were conducted to determine the effect of the
accumulator pressure ratlos, conditioner cycle requirements, and conditiomer start-
up time on accumulator size and weight.

D-6,1 Conditioner Assembly Transient Analysis - To size accumulators for a

minimum weight configuration and to insure a minimum pressure to the thruster
assemblies, the conditioner transient startup time or equivalent conditioner lag
time must be determined. For analysis convenience, an equivalent lag time is used
for APS design and sizing instead of actual conditioner transient characteristics.
Equivalent conditioner lag time is defined as the time with no flow into the
accumulator which would produce an accumulator pressure decay equal to that
~exhibited by the actual assembly. Evaluation of this pressure decay and thus
equivalent lag time required mathematical modeling of the dynamic behavior of the
individual conditioner assembly components and their respective interfaces.

D-6.2 Conditioner Assembly Mathematical Model - The model designed for condi-

tioner transient analysis was based upon the following assumptions:
(1) dnertial effects of propellants within lines may be neglected
(2) turbine efficiency is constant
(3) all lines are frictionless
(4) all components are thermally insulated
(5) all gases are ideal with constant specific heats taken in the regions of
interest
(6) valve response is equivalent to a 50 millisecond square wave delay
(7) sgas generator combustion response is equivalent to a 10 millisecond square
wave delay.
The valve and gas generator response were assumed to be represented by fixed square
wave delays. The turbopump, heat exchanger, and accumulator transients were modeled
on the basis of the above assumptions. The equations governing the dynamic behavior
of these components were based upon:
(1) the turbopump equations of motion, where the rate of change of turbopump

angular momentum is equal to the turbine torque minus the pump torque;
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(2) the heat exchanger energy balance, where the rate of change of heat
exchanger internal energy is equal to the rate of heat inflow on the
hot side minus the rate of enthalpy outflow on the cold side

(3) accumulator energy balance where the rate of change of accumulator
temperature and pressure was derived from simultaneous solution of the

energy and mass conservation equations.

When applied to the APS conditioning assembly, these basic equations express
the relationships between turbopump speed, heat-exchanger wall temperature,
accumulator temperature and pressure, and their respective time derivatives. The
equations were solved using a standard finite difference approach. For each time
step the time derivatives were calculated, and integrated to provide new derivatives
for the next time step., Figure D-77 provides a summary of design data for the
baseline conditioner components. The remainder of this section presents a detailed
description of the analyses of these components when integrated as a conditioner
assembly.

D-6.3 Turbopump -~ The time rate of change of the turbopump speed is equal to
the rate of change of turbopump angular momentum divided by the moment of inertia.
The rate of change of angular momentum is equal to the difference between turbine
and pump torque. Since turbine efficiency and power are assumed constant, the
turbine torque is a linear function of speed. Pump torque was based upon the
product of the pump head and mass rate of flow divided by the pump efficiency.

The relationship between pump flow, efficiency, speed, and head were determined
using the normalized pump performance curve of Figure D=78,

D-6.4 Heat Exchanger - The heat exchanger wall temperature time derivative is

equal to the rate of change of heat exchanger internal energy divided by the pro-
duct of the heat exchanger mass and specific heat. The rate of change of internal
energy was the difference between the rate of heat into the exchanger on the hot-
gas side and the rate of enthalpy out on the cold side. The heat rates were
determined from the product of their respective steady-state heat transfer coef-
ficients and the temperature gradient obtained using the current wall temperature.
The steady-state heat transfer coefficients are chosen such that, when the wall
temperature equals the log mean of the steady-state cold-side and hot-side tempera-

tures, the rate of heat in on the hot side equals the rate out on the cold side.
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VALUE
PARAMETER UNITS
H, 0,
TURBOPUMP
MOMENT OF INERTIA LB/IN? 10.386 2.664
SPEED AT MINIMUM HEAD REV/MIN | 66286, 34661,
TURBINE EFFICIENCY % 16.0 23.1
TURBINE MEAN BLADE TIP RADIUS INCHES 5.2 43
RATIO OF MEAN TIP SPEED TO SPOUTING - 29 125
VELOCITY
MASS RATE OF FLOW ACROSS TURBINE LB/SEC 4256 254
PUMP EFFICIENCY AT MINIMUM HEAD 9 40.0 40.0
PUMP EFFICIENCY AT DESIGN CONDITIONS % 57.6 54.7
HEAT EXCHANGER
MASS LB 74.1 527
MEAN HOT SIDE TEMPERATURE oR 2266, %52
COLD SIDE EXIT TEMPERATURE oR 252, 458,
ACCUMULATOR
RATE OF MASS OUTFLOW (4 ENGINES FIRING) | LB/SEC 3.6 1415
STEADY STATE TEMPERATURE o 252, 458.
MINIMUM PRESSURE LBF/IN2A | 1021, 914
VOLUME (MIN WEIGHT FOR 0.5 SEC LAG) FT3 2. 116

CONDITIONING ASSEMBLY COMPONENT DATA

FIGURE D-77
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During recharge the mass flow rate through the pump decreases and the heat
exchanger temperature must be reduced to avoid loading extremely high temperature
propellant into the accumulator. This was accomplished by throttling the oxygen
addition to the heat exchanger. This situation is simulated in the model by
reducing the hot side temperature to that of the turbine outlet.

A D-6.5 Conditioning Assembly Transiént Analysis Results - The conditioning

assembly transient model provided accumulator pressure decay histories for various
accumulator volumes. Figure D=79 presents parametric data on accumulator pressures
during the conditioner start translents. As shown when power is increased above
that required for steady state operation the amount of accumulator pressure decay
is reduced and hence the equivalent conditioner response time is improved. The
reduction in pressure decay during startup is significant with only small increases
in turbine power (5-10%) but further gain, by continued power increases, is limited.
Based on these results it was concluded that small power increases during the
conditioner start transients were a desirable feature. The power increase is
achieved by the inherent sequencing characteristics of the gas generator valves
which provide a high flow rate when they are initially commanded open and flow is
subsequently throttled to the level commanded by accumulator pressure. For
purposes of accumulator sizing an average power ratio of 1.05 was used to define
equivalent conditioner start time. Analysis results simulating accumulator pres-
sure decay for a range of accumulator volumes are shown in Figure D-79. From the
volume/pressure decay data presented an equivalent conditioner response time of
0.5 sec was derived for accumulator sizing.

Analysis of the conditioning assembly performance shows that recharge require
approximately 10 seconds with no thrusters firing.

D-6,6 Accumulator Sizing - Accumulator size is selected on a minimum weight

basis within the constralnts imposed by conditioner assembly performance, relia-
bility criteria, and thruster design. Conditioner assembly performance defines an
equivalent conditioner lag time; reliability criteria limits the number of condi-
tioning cycles allowed per mission; and thruster design (chamber pressure) defines
the minimum accumulator pressure. As previously noted within these constraints,
the optimum accumulator size is a function of the total of attitude-control impulse
requirements and APS total thrust capability. The optimum weight accumulator
design is therefore a function of four independent parameters; equivalent conditioner
lag time, attitude-control impulse requirements, number of conditioning cycles,

and design chamber pressure. For a given thrust, the volume of the_accumulator is
D-118
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sized by the conditioner lag time and ratio of the switching pressure to the minimum

accumulator pressure.

The blowdown pressure ratio 95;%%%%59 is determined by the allowable number of
conditioning assembly cycles and the attitude control impulse requirements. The
accumulator maximum pressure is selected such that the difference in accumulator
propellant density, at maximum and switching pressures, @ultiplied by the accumu-~
lator volume, provides the mass of propellant required to perform all additional
maneuvers, divided by the number of conditioner cycles. Since the wall thickness
required for structural integrity increases with maximum pressure, a minimum weight
tradeoff between increased volume and increased wall thickness must be performed in
order to select the optimum accumulator size.

Thus, for a given lag time, minimum pressure, and number of conditioner cycles,
there is a switching pressure and maximum pressure corresponding to each choice of
accumulator volume, and for each combination of accumulator volume and maximum
pressure, a unique accumulator weight can be assigned.

D-6.7 Accumulator Sizing Analysis Results - The conditioner assembly transient

analysis. showed that the hydrogen and oxygen equivalent lag times are both 0.50
sec. To provide a 500 lbf/inza chamber pressure for minimum total APS weight, the
minimum accumulator pressures required are 1021 lbf/inza for the hydrogen and

914 lbf/inza for the oxygen. A conditioner assembly cycle limit of 50 per mission
was selected for both hydrogen and oxygen. Nine +X translation maneuvers of
appreciable magnitude are specified in the current seventeenth-orbit-rendezvous,
mission dnuty cycle, and the conditioner assembly operates continuously during each
of these maneuvers thus, nine conditioner cycles are inherently required for the
conditioner., The 41 cycles remaining are for the attitude control and other axis
maneuvering impulse. Figure D-80 shows the APS weight as a function of the
‘maximum-to—switching pressure ratio for various values of switching~to-minimum pres-
sure ratio and number of conditioning cycles, using the 0.5 second lag time and

500 lbf/inza chamber pressure. This figure shows that a switching-~to-minimum pres-
sure ratio of 1.13 in’conjunction with a maximum~to-switching pressure ratio of
2,00 for both propellants yields the minimum subsystem weight. These pressure
ratios correspond to switching and maximum pressures of 1153 lbf/1n2a and 2307 1b£/
in’a respectively for the hydrogen assembly and 1037 lbf/1n a and 2074 lbf/1n a
respectively for the oxygen assembly. The corresponding accumulator volumes and

weights are 29‘ft3 and 678 1b for hydrogen and 11.6 ft3 and 320 1b for oxygen.
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D-7. THRUSTER ASSEMBLIES

The APS uses gaseous hydrogen oxygen thrusters to pro&ide the impulse necessary
for space shuttle vehicle attitude control and orbital maneuvers. The APS weight
is very sensitive to the performance of these thrusters due to the magnitude of
the APS total impulse requirements for all orbital maneuvers. To ensure a minimum
weight subsystem, a detailed evaluation of thruster design and performance was
conducted.

During Subtask A a film cooled thruster design (Figure D-81l) was selected for
the relative evaluation of the APS concepts for the three impulse levels considered.
The dump/film cooled thruster represented a well-characterized design concept,
with data available for a wide range of design conditions. This approach represented
a compromise between thruster performance, design simplicity, and cost.

In order to verify that the relative weight comparison of the Subtask A concepts
was not affected by the type of chamber cooling (thruster performance) assumed,
the supercritical and the turbopump concepts of Subtask A were reevaluated for
regeneratively cooled thrusters (Figure D-82). The performance level used for the
regeneratively cooled concepts represented maximum performance without cycle life
considerations. The turbopump APS, with regenerative cooled thrusters, was
optimized for mixture ratio and chamber pressure for the three impulse classes
considered. The resulting APS weights are shown in Figures D-83, D-84, and D-85.
Optimum subsystem weight resulting from incorporating the regenerative cooled
thruster in the supercritical subsystem is shown in Figure D-86,

The results of using the higher performance thruster is presented in Figure
D-87, and shows that the weight advantage of the turbopump over the supercritical
concept is amplified over the subtask A results. In those results, the turbopump
APS was the lightest configuration and the supercritical APS the nearest competitor.
Subsystem selection is not affected by selection of the higher performance regen-
erative cooled thruster, but absolute weight is strongly affected. Therefore in
Subtask B, it was necessary to reevaluate thruster design and cooling methods to
provide an optimum design, thus minimizing APS weight. This evaluation is presented
in the following section, which discusses injector and combustion chamber concepts

considered, as well as baseline design and performance.
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ORBITER A

o SIGNIFICANT EFFECT ON ABSOLUTE APS WEIGHT AND DESIGN POINT

o AMPLIFIES WEIGHT ADVANTAGE OF TURBOPUMP APS

APS WT @ <10 FPS

FILM COOLED REGENERATIVE
TURBOPUMP 6915 6112
SUPERCRITICAL 8164 7570

IMPACT OF BASELINE THRUSTER MODEL

FIGURE D-87
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D-7.1 Thruster Concept Selection - The primary components of the APS

thrusters are the propellant injector, combustion chamber, igniter, and propellant
controls. Several design concepts were evaluated for each component. Injector

and combustion chamber alternatives evaluated are shown in Figure D-88. In the
selection of each component, consideration was given to the use of common components
for attitude control and +X maneuver thrusters.

Selection of combustion chamber type and resultant coolant requirements is
important, due to its influence on delivered impulse. Figure D-89 compares the
performance of three basic chamber cooling concepts for a range of mixture ratios
for a thruster design representative of the APS attitude control thruster. The
performance of the dump/film cooled thruster characterized in Subtask A is shown
by the lower curve. Performance for a fully regeneratively cooled thruster is
presented to show the maximum performance capability of a thruster without consider-
ation of cooling requirements for cycle life or adaptability of the nozzle to
scarfing. The performance of a partial regeneratively cooled chamber with
chamber and nozzle film cooling is the concept capable of meeting cycle
life requirements and allows nozzle scarfing for attitude control installations
while providing high performance. In addition, the thruster camn be adapted for
the major +X maneuvérs.without major redesign of the actively cooled portion of the
thruster. The performance of the high pressure APS thrusters for attitude control
and +X translation is shown in Figure D-90 for the final design point conditions.

For the Subtask B baseline design, the regemeratively/partially film cooled
design was selected. This design provides a compromise between specific impulse
performance and high cycle life capability.

D-7.2 Design - This thruster, shown in Figure D-91 utilizes an impinging
coaxial injector, a regenerative/film cooled chamber with nozzle film cooling,
electrical igniter, and parallel linked poppet propellant valves with pneumatic
actuation. The propellant valves are packaged at the side of the thrust chamber
to minimize overall thruster length, to shorten line connection between hydrogen
valve and chamber iﬁlet, and to prbvide ease of Iinstallation and maintenance,

The igniter is an electrical spark type, and is sequenced to discharging hot gas
down the center of the injector along the thruster axis. A separate igniter
solenoid bipropellant valve provides the proper sequence for chamber ignitiom.

The electrical circult is redundant to increase ignition reliability.
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Injector -~ The injector concept selected for the high pressure APS thruster is
an impinging coaxial design. This is a variation of the more conventional coaxial
element wherein the fuel is injected paralled to and concentric with the axially
directed oxidizer stream. The impinging coaxial element injects the hydrogen
normal to the oxygen. The concept uses a concentric ring manifold attached to a
face plate assembly containing internal fuel passages. The oxidizer channels
discharge into holes which go through the face plate parallel to the chamber axis.
The fuel channels feed into a labyrinth of passages in the face plate which provide
regenerative and transpiration cooling of the face as well as fuel entry into each
element normal to the oxidizer stream. In arriving at the coaxial type element,
several concepts were considered. These include coaxial element, impinging coaxial
element, impinging orifice, vané, and hyperthin.

The coaxial element design combined with a transpiration cooled face plate
represents a ''classical" injector design for hydrogen-oxygen propellants. This
concept and the selected impinging coaxial element concept previously discussed
are the two recommended approaches being evaluated by ALRC on Contract NAS 3-14354,
"Hydrogen-Oxygen APS Engines', for NASA-Lewis Research Center. The conclusions
reached from this injector evaluation favor the impinging coaxial design.

Combustion Chamber - The combustion chamber consists of a regeneratively

cooled section, extending from the injector through a convergent/divergent nozzle.
The regeneratively cooled chamber terminates at an € = 11.1. The subsequent

portion of the nozzle is considered as a separate component, due to its signifiéantly
different thermal and pressure environment.

The regenerative cooled chamber selected for the high pressure APS thruster
employs rectangular channel geometry and a high conductivity copper alloy. The
design is a single pass concept with hydrogen entering the chamber at an area ratio
of 11:1 and flowing forward through 77 channels toward the injector. The flow
passages discharge into a manifold which in turn feeds the injector. This manifold
also supplies hydrogen to a fuel film coolant ring which distributes a small per-
centage of fuel down along the chamber wall. The chamber is fabricated from a
Be-Mg-Cr-Cu alloy forging.

To achieve an optimum design, several heat transfer programs were used. One
program defined gas side film conditions, and, in combination with another program,

defined thermal conditions within the channels. Various percentages of film
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cooling were selected, along with variations in channel size. By means of cross
plotting, a family of curves was generated defining the characteristics of the
chamber for a specific set of conditions, such as propellant temperature, chamber
pressure, and thrust. Based on specified thruster design conditions, a specific
design was achieved which exhibits the characteristics noted in Figure D-92.

This heat transfer analysis then allowed prediction of thruster cycle life. The
results are shown in Figure D-93, The information on this curve is obtained by

calculating the total strain range (Aat)-

Ae = 20At
t
o = coefficient of thermal expansion
At = temperature gradient across wall obtained from Figure D-94.a

and entering this value in Figure D-94.b along with appropriate wall temperature
from Figure D-95.

As noted in Figure D-93 for a hydrogen design flow temperature of 250°R,
approximately 7 percent fuel film coolant flow is needed to ensure the desired
cycle life of 105.

Nozzle Extension — The high pressure APS thruster has a nozzle extension

attached to the regeneratively cooled chamber at an area ratio of 11:1. This
attachment point was based on a balance between pressure drop, wall temperature,
percentage of fuel film cooling, weight, and fabrication. Resulting wall tempera-
ture is shown in Figure D-96, and allows use of a high temperature alloy as opposed
to a refractory metal. Hastelloy X is the material selected; it will extend from
the attachment point to the exit diameters of 12.9 in and 18.2 in for area ratios
of 60 and 120 respectively. Cooling of the extension will be achieved by introduc-
ing 4 to 5 percent fuel flow, depending on the area ratio at the point of attach-
ment, to the regenerative cooled portion.

The film cooled nozzle extension must be capable of extended multicycle
operation at high temperatures in the exhaust environment. This leads to consider-
ation of high temperature alloys and refractory metals. Two high temperature
alloys were examined, Hastelloy X and Haynes Alloy No. 188. Hastelloy X is a
nickel base alloy which possesses exceptional strength and oxidation resistance.
The alloy has excellent forming characteristics, and can be readily welded to
itself and to stainless steel. Hydrogen compatibility with Hastelloy X will not

be a problem, since the embrittling effects of hydrogen are most pronounced using
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DESIGN CONDITIONS
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DESIGN CONDITIONS
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high pressure, high purity hydrogen at room temperature. The Hastelloy X would
be exposed only to low pressure hydrogen highly contaminated with water and at

an elevated temperature. The oxidation resistance of Hastelloy X is excellent;
it is used in jet engine afterburner components, turbine blades, and nozzle
vanes. Recent NASA tests on the resistance of nickel base materials under cyclic
oxidation and thermal fatigue conditions showed Hastelloy X was among the most
crack resistant of the alloys tested.

Haynes Alloy No. 188, a cobalt~base material provides strength superior to
Hastelloy X at temperatures above 1800 F, but can be worked and welded similar to
Hastelloy X. The Haynes 188 alloy is higher in cost, however, than Hastelloy X.
The compatibility of Haynes 188 with oxidizing gases is comparable to Hastelloy X.
Data on the compatibility of the Haynes 188 cobalt-base alloy in hydrogen environ-
ments is not available but 1s estimated to be similar to the Hastelloy X. The
fatigue characteristics of this alloy are similar to Hastelloy X. Hastelloy X was
selected because of slightly better fabricability and lower cost.

Columbium, molybdenum, and tantalum alloys were also considered for nozzle
extensions. These refractory metals have severe oxidation limitations and coatings
are not sufficiently developed to provide the design cycle life.

Igniter Description - The igniter for the APS thruster utilizes the spark dis-

charge technique. The electrical ignition is attained by a spark discharge across
the oxidizer flow stream. The addition and mixing of a small quantity of fuel
immediately downstream of the spark-excited oxygen causes ignition within the
igniter chamber. Figure D-97 depicts this basic design.

The igniter assembly consists of a high response bipropellant valve, a valve
mounting adapter, an igniter body, an igniter combustion chamber, a spark plug, and
an igniter coolant jacket.

The chamber of the pilot igniter is made from Hastelloy X. The body is made
from a magnetic stainless steel to provide shielding of the electromagnetic radia-
tion from the spark discharge. The spark igniter is a commercially available unit
as is the spark igniter power supply.

The sequenced eiectrical igniter provides a positive and fast ignition of pri-
mary injector propellant. Figure D-98 presents experimental data during thruster
pulsing and shows the typical transient characteristics for 1500 1b thrust APS
engine firing a sequence of 0.100 sec duration pulses with 0.150 sec off. The

initial valve signal opens the thrust chamber valve actuation pilot valve, the
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igniter valves, and the spark current for the electrical sequencer. The igniter
torch is established in 0.025 sec as shown by the rising igniter injector pressure
levels. The primary engine thrust chamber valves begin to open in 0.035 sec and
are fully open 0.010 sec later. The thrust trace parallels valve opening rate and
full thrust is achieved 0.045 sec after initial valve signal. The cycle is reversed

for shutdown.

Valve Description - The propellant control valve for the APS thruster is a

linked parallel poppet type with pneumatic actuation. The valve is shown in
Figure D-99. This configuration has been tested under NASA-Lewis contract Number
NAS 3-14354 and has demonstrated repeatable travel times of 0.010 sec. This

type valve provides the response capability required for pulse mode operation. The
poppet type valve also seals with a minimum of sealing surface wiping or surface
shear which is desirable from a cycle life standpoint.

The poppet seat material is KEL-F which exhibits excellent compatibility with
the propellants. Reasonable seal stress levels are achieved by control of the
seat surface area and by balancing the actuator spring force. The single pneumatic
actuator is coupled to both of the poppet shafts with a common link. The fast
response pilot valve sequences regulated line hydrogen pressure into the pneumatic
actuator to open the valve. The actuator cavity is vented when the pilot valve is
sequenced closed and the actuator spring closes the valve. Venting is accomplished
internally through the thruster assembly.

The igniter assembly uses separate propellant control valves to sequence the
igniter during the engine start transient. The igniter torch is established prior
to the initial primary propellant flow through the injector to assure smooth ignition
transients. The valving for the igniter is a linked bipropellant valve actuated by
a fast response solenoid to provide igniter torch ignition and operation within
0.035 sec after initial electrical signal to the engine. The linked valves
provide the correct propellant entry into the igniter torch chamber.

D-7.3 Thruster Performance - Delivered specific impulse for the high pressure

thruster was calculated using the JANNAF "Simplified Method" standardized
performance evaluation technique. With this procedure each of the performance
losses which make up the difference between delivered and theoretical vacuum speci-
fic impulse was calculated for the specific operating point. These losses are
defined and are a result of: kinetic limited reactions, incomplete energy release,

boundary layer heat transfer and shear drag, non-axially directed exit momentum,
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mixture ratio maldistribution, propellant impurity, and supplemental cooling flow.
The losses due to boundary layer heat transfer and non-axially directed exit momen-
tum were computed via standardized loss charts. Kinetics and impurity losses were
computed using the One-Dimensional Kinetics Program. Energy release losses were
based on current gas/gas APS thruster technology data received from current testing
under NASA-Lewis Research Center Contract NAS 3~14354. With this performance
calculation procedure, the thruster performance was calculated for each operating
point commensurate with the propellant inlet enthalpies, thruster size, chamber
pressure, and mixture ratio.

Two of the JANNAF performance losses are based on test data. These losses
are the result of incomplete energy release and supplemental film coolant f£low.

In order to determine these losses, computation techniques have been developed
which have subsequently been verified by test data.

Energy release losses have been identified at 1 percent commensurate with a
99 percent energy release efficiency. Justification of this selection is shown in
Figures D-100 and D-101 where the emergy release efficiency of five injector
concepts are shown for two classes of injector. The impinging coaxial injector
with the "I" triplet pattern, Figure D-100, employs momentum exchange mixing to
obtain a 99 percent energy release in a 5.5 in length chamber.

Figure D-101 developes a 99 percent energy release efficiency in an 8-inch
chamber as a result of turbulent shear mixing between the gaseous oxidizer and
fuel. Either of these two concepts have demonstrated the required 99 percent
energy release efficiency which was the value used to calculate the thruster
performance.

The other loss results from employment of supplemental fuel film cooling. A
thermal exchange model has been developed which evaluates the cooling performance
loss with a two stream tube mixture ratio maldistribution loss model. The coolant
stream consists of heated hydrogen at a predicted mean bulk temperature which

extracts enthalpy from the core stream assumed not to mix with the ggolant and at
an increased uniform mixture ratio. A mass summation of the coolant impulse and

the reduced enthalpy core denotes the shifting equilibrium performance loss due
to cooling. An additional loss results due to increased kinetics losses since
the core mixture ratio is shifted higher due to the removal of hydrogen flow.
This kinetics loss is charged to cooling in the performance loss summary. Justi-

fication of this loss computation method is shown in Figure D~102. There the
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solid lines reflect predictions with the thermal exchange model, and the black

dots and connecting dashed trends denote test data correlation. Below 10 percent
coolant flow, the model appears conservative indicating slightly higher losses

than the test data. From 10 to 30 percent coolant flow, a better correlation
results. With this data correlation as justification of the expected cooling

losses, the delivered performance was calculated for supplemental cooling percentages
shown to be required from heat transfer analysis.

Performance Summary - A summary of thruster performance is presented in

Figure D-103 for the thruster design conditions. This figure provides a break-
down of specific impulse losses and the resultant delivered specific impulse.

D-7.4 Thruster Weight - The thruster weight is shown in Figure D-104 as a

function of chamber pressure and expansion ratioc. The attitude control and +X

thruster design points and weights are shown for the orbiters.
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THRUST, LBF 1850
MIXTURE RATIO 4.0
CHAMBER PRESSURE, LBF/INA 500
AREA RATIO 60

PROPELLANT TEMP, °R
HYDROGEN 245
OXYGEN 380
CHAMBER COOLING, % ( €< 11:1) 7.6
NOZZLE COOLING, % ( € >11:1) 5.4

PERFORMANCE ‘
THEORETICAL Ig, VACUUM, LBF-SEC/LBM 472.5
COOLING 10SS, LBF-SEC/LBM 7.9
IMPURITY LOSS, LBF-SEC/LBM 1.0
CURVATURE-DIVERGENCE LOSS, LBF-SEC/LEM 3.9
KINETICS 10SS, LBF-SEC/LBM 2.7
ENERGY RELEASE LOSS, LBF-SEC/LBM L.6
BOUNDARY LAYER LOSS, LBF-SEC/LEM 5.9
DELIVERED VACUUM SPECIFIC IMPULSE, LBF SEC/LBM 446.5
APS THRUSTER PERFORMANCE SUMMARY
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D-8. +X TRANSLATION THRUSTER INTEGRATION STUDY

Two basic functions are provided by the APS; these are 3 axis attitude
control and translation capability. The baseline APS uses gaseous H2/
gaseous O2 thrusters of the same design to perform all functions. The thrusters
for attitude control and for Y and Z translation maneuvers perform a large number
of small impulse burns while the thrusters for the +X translation maneuvers are
required to perform a relatively small number of large steady state burns. Of the
total APS impulse requirement approximately 90 percent is expended for +X translation
maneuvers. Thus it was potentially advantageous to use thrusters individually
designed to provide maximum specific impulse for the +X translation functions.

Integration of higher performance +X translation thrusters with the APS
was investigated to evaluate the effect on overall subsystem weight.

Specifically, +X thrusters of progressively greater design deviation from
the attitude control thrusters, as follows, were evaluated:

(1) thrusters using gaseous oxygen and hydrogen with increased nozzle

expansion ratio

(2) thrusters with increased expansion ratio designed to operate with

liquid hydrogen and gaseous oxygen

(3) thrusters with increased expansion ratio designed to operate with

liquid hydrogen and liquid oxygen.
The above options represent a continuous improvement in specific impulse at
the expense of increased development effort. Invcomparing these optioms,
study schedule and budget considerations precluded a detailed optimization of
each and it was therefore necessary to establish the ground rule that the
APS turbopump assemblies would remain fixed for each thruster concept. This
resulted in common mixture ratios and chamber pressures that were not
necessarily optimum for the different thruster design, however, point comparisons
were made to assess the effect of these on study results.

In addition this study was conducted around the design condition for a
preliminary baseline APS design. Consequently a chamber pressure of 300 lbf/inza
and hydrogen conditioning temperatures of 100°R for the regeneratively cooled
APS thrusters and 200°R for the film cooled thrusters were used. The final APS

design resulted in a chamber pressure of 500 1bf/in,a and a hydrogen conditioning

2
temperature of 200°R was selected for both thruster cooling approaches.
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Figure D-105 summarizes those design conditions, used in the study which princi-
pally affect +X translation thruster performance.

The results of this study show the weight comparisons to be extremely depen-
dent on +X thruster performance, start-chilldown losses, and on the design point
selected for the gas/gas thrusters in terms of the conditioning temperatures
of the propellants. A more in-depth +X translation subsystem analysis also
considering subsystem design point optimization and minimization of start losses
would be required before the lowest weight subsystem could be idéntified. How~
ever, this study does indicate that the incorporation of separately optimized
+X translation thrusters would result in a weight savings but the amount of
savings is highly dependent on the conditioning temperature of the hydrogen in
the gas/gas design and on the type of gas/gas engine used, i.e., regenerative or
film cooled. These results musﬁ be interpreted, not in the context of an Orbit
Maneuvering Subsystem/APS comparison, but rather as an evaluation of performance
improvement modifications to an existing gas/gas APS.

D-8.1 +X Translation Thrusters Options - Both film cooled and regeneratively

cooled gas/gas thrusters were evaluated to assess the advantage of the +X trans-—
lation engine alternates relative to an all maneuver APS using either film cooled
or regeneratively cooled thruster concepts. Figure D-106 presents the matrix of
alternates considered and shows the three concepts which were evaluated. These
were:

1) GHZ/GOZ

cooled attitude control thrusters

+X translation thrusters with either film cooled or regenerative

(2) Regeneratively cooled LHZ/LO2 +X translation thrusters with either film
cooled or regeneratively cooled attitude control thrusters
(3) Regeneratively cooled LHz/GO2 +X translation thrusters with either film
cooled or regeneratively cooled attitude control thrusters.
Concept A is the baseline APS using gas/gas thrusters for both attitude control
and +X translation. Concept B uses the liquid Hz/liquid Oz‘thruster35

while concept C uses the liquid Hz/gaseous O2 for +X translation.
For the LH2/LO2 thrusters, bypass flow is reduced to that required to provide

power for the pumps and to condition the propellants which feed the gas generators.
This weight advantage is partially negated by the amount of chill down propel-

lant lost each time the thruster is started. This propellant loss occurs
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for two reasons:

(1) The feed assembly must be cooled before the thruster can be started
to preclude two phase hydrogen and oxygen being delivered to the
thruster
(2) Any liquid hydrogen or oxygen left in the lines at the end of a burn
would eventually vaporize, and therefore would not be usable in the
LHZ/LO2 thruster. ' . .
The LH2/GO2 +X translation thrusters have a bypass flow and specific impulse
between the baseline GH2/G02 subsystem and the LHZ/LO2 subsystem as the oxygen
for the thrusters is conditioned. Therefore the LHZ/GO2 thruster bypass flow is
required to provide power for the pumps and to condition the flow to the gas
generators in addition to conditioning the oxygen for the +X translation thruster.
Since gaseous oxygen is supplied to the thrusters, there are no start chilldown
losses associated with the oxygen feed assembly.

D-8.2 Design Point Selection ~ As previously discussed, the +X translation

thruster specific impulse level has a significant effect on overall APS weight
since the majority of the total impulse requirement is expended in the +X
direction. Several factors affect the specific impulse and investigation was
required to define their effect., The assumption of a common turbopump assembly
operating point for both APS and +X translation operation required the same flow
rates and pressures for both APS and +X thrusters. The +X translation thrusters
assumed:

(1) a thrust level of 1850 1b

(2) a chamber pressure of 300 psia

(3) a mixture of 4:1.

An expansion ratio of 120:1 was used throughout this study to provide for
a comparison with the APS gas/gas thrusters. Figure D-107 presents the effect
of expansion ratio (e) on overall subsystem weight for these types of thruster
assemblies, As shown no significant weight advantage is available with a greater
than 120:1,

A study of weight sensitivity to mixture ratio and expansion ratio is
shown in Figure D-108 for LHZ/GOZ' Figure D-109 shows similar data for LHZ/LOZ'
The LHZ/LO2 +X translation subsystem weight is not a minimum at a mixture
ratio of 4:1; however, a mixture of 4:1 was selected to be consistent with

APS operational requirements. The expansion ratio was set at 120 to make it
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equivalent to the GHZ/GO thruster expansion ratio, thus providing a common basis

2

for subsystem comparison.
Figure D-110 presents a summary of the design conditions used for the study.

With the gas/gas option, 6 +X translation thrusters were used. For the other

options two gas/gas thrusters were used with four LHZ/LO or four LHZ/GO2 thrus-

ters. The two gas/gas thrusters are necessary in these iptions to satisfy very
low +X maneuver impulse requirements.

These arrangements satisfy the reliability requirements by providing +X maneu-~
ver capability after a double failure (2 thrusters inoperative) by using the two
aft firing gas/gas thrusters to back up the primary +X translation thrusters.

Figure D-111 presents a summary of the nine +X translation maneuvers required
for a seventeenth orbit rendezvous miséion. The gas/gas thrusters satisfy any
additional small +X translation maneuvers such as thosevrequired during docking.

D-8.3 Maneuvering Velocity Allocation - Propellant start losses increase

linearly with the number of times liquid/liquid or liquid/gas +X translation

thrusters are used. Conversely average subsystem specific impulse increases as
the higher performance +X thruster configurations are used for more maneuvers.
These two opposing effects result in an optimum impulse allocation between liquid/
liquid (or liquid/gas) thrusters and the lower performance gas/gas thrusters. For
each thruster option, éubsystem welght was determined as a function of the number
of +X translation maneuvers performed to establish minimum weight points. At this
point, the weight of the APS incorporating the new design +X translation thrusters
was compared to all GHZ/GO2 APS subsystems which utilized either film or regen-
eratively cooled thrusters.

Film Cooled Gas/Gas APS Thrusters

LHy/LOy +X Thrusters - Figures D-112 and D-113 present relative subsystem weights

as a function of velocity allocation to illustrate the effect of +X translation
thrﬁster specific impulse and start chill-down losses. As shown, neither variations
in the LH2/LO2 specific impulse nor in the start losses have a significant effect

on the optimum allocation. LH2/L02 subsystem results in a maximum weight advantage
at four starts over the expected range of specific impulse and propellant losses.
This weight advantage is a result of the higher relative performance available

with the LH2/L02 thrusters. The first four maneuvers are of such an impulse magni-

tude that the propellant savings associated with the use of the LHZ/LO2 thrusters

more than offsets the start chill-down losses. Maneuvers five through nine are all
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BURN -

MANEUVER _NO AV TOTAL IMPULSE CUMULATIVE AV
DEORBIT 1 496 4,184,952 496
HEIGHT ADJUSTMENT 2 282 2,379,348 778
COELLIPTIC BURN 3 239 2,016,539 1017
PHASING BURN 4 130 1,096,862 - 1147
DISPERSION 5 40 337,496 - 1187
MCC-1 6 36 303,747 1223
DISPERSION 7 25 210,935 1248
TPI 8 22 185,623 1270
MCC-2 9 19 160,311 1289

10,875,813

SEVENTEENTH ORBIT RENDEZVOUS MANEUVERS

FIGURE D-111
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less than 50 ft/sec and for these maneuvers, the start chill-down losses are
greater than the propellant savings. The two GH2/G02 thrusters would be used for
manauvers five through nine.

LH2/G02 +X Thrusters - Figure D~11l4 presents relative subsystem weight as a

function of +X translation thruster starts. As shown, the LH2/G02 subsystem pro-
vides a weight advantage over the all GH2/G02 APS. The subsystem weight is essen-
tially constant from five through nine starts. Thus, the LHZ/GO2 +X translation
thrusters could be used for all nine maneuvers, although two GH2/G02 thrusters
would still be required for docking.

Comparative Performance with Film Cooled, Gas/Gas, APS - A summary of the

effect of start chill-down losses on subsystem weight for the two above mentioned
alternates, compared to gas/gas translation thrusters, is presented in Figure D-115.
As shown, both LH2/LO2 and LHZ/GO2 offer significant weight advantages. Minimiza-
tion of start-chill-down losses can amplify this weight savings, especlally for
the LH2/L02 +X translation thrusters.

Regeneratively Cooled, Gas/Gas APS

LHZ/LO2 +X Thrusters - Figure D-116 presents relative subsystem weight as

a function of +X translation thruster starts. As with a film cooled APS, four
starts provides near minimum weight, allowing the remaining five maneuvers to
be performed by the two GHZ/GO2 thrusters.

LHZ/GQ2 +X Thrusters - Figure D-117 presents relative subsystem weight as

a function of +X translation thruster starts. Here the minimum is not a pronounced
weight advantage and for comparative purposes nine starts were selected for the
LHZ/GO2 thrusters.

Comparative Performance for Regenerative Cooled, Gas/Gas, APS - A summary

of the effect of start chilldown losses on subsystem weight for the two above
mentioned alternates is presentedvin Figure D-~118, For this case there is no
advantage to the improved +X thruster performance unless start—chill—down loss
is minimized. |

Summary Comparison of Alternates - A summary weight comparison for all

alternates is presented in Figure D-119. For these, start losses of 75 1b/start
and 15 1b/starts were used for oxygen and hydrogen respectively. These include

propellant losses due to line and pump chilldown and line propellant vaporization.
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If regeneratively_cooled GHZ/GO2 thrusters are used, the maximum weight savings
(200 1bs) is obtained by utilizing LHZ/LO2 +X translation thrusters for four
starts. If film cooled GHZ/GO2 thrusters are used, the LH2/L02 +X translation
thrusters provide a weight savings of 900 lbs. 'The regenerative cooled gas/gas
APS baseline for this study provided a hydrogen conditioning temperature of 100°R
minimum at the thruster inlet. A minimum hydrogen propellant inlet temperature
of 200°R was selected for the final APS design to provide the capability of using
either film or regenerative cooling on the APS thrusters. This change in condi-
tioning, combined with other changes to the final baseline APS design, result in
a subsystem specific impulse approximately equal to that of the film cooled APS.
It would be potentially feasible to provide an advantage of approximately 900 1bs

over the final baseline by using LHZ/LO thruster for +X translation maneuvers,

2
however, this would require the development of a completely different thruster

assembly with its assoclated development cost.
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APPENDIX E
OPERATING PERFORMANCE AND TRANSIENT ANALYSIS

To fully assess APS design adequacy, analyses were conducted to evaluate
operation under conditions simulating mission usage, with nominal and off-nominal
component/assembly performance and transient characteristics of the thrusters
when coupled to the supply lines., This appendix describes the results of both

studies.
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E~1. SUBSYSTEM OPERATING PERFORMANCE

The APS was sized and designed on the basis of nominal, steady state,
component performance. In actual operation, heat transfer into the accumulators
and supply lines will alter operating pressures and temperatures with resultant
performance variations. Similarly off-nominal performance of components and/or
assemblies will result in performance changes; therefore, in order to establish
APS design adequacy, it was necessary to simulate APS operation dﬁring a mission,
The approach taken for this study was to first simulate mission operation using
nominal component performance to define the effects on performance of heat
transfer into the subsystem and of normal temperature changes due to accumulator
blowdown and recharge. This established nominal APS operating characteristics.
Off-nominal component/assembly operation was then prescribed and missions
were simulated. These résults, when compared with nominal APS operation, allowed
a quantative assessment of the significance of component/assembly accuracy in
terms of APS performance. To accomplish these analyses, a computer program was
developed which models the thrusters, supply lines, accumulators, and conditioner
assembly.

E~1.1 Computer Program Description - The operating performance program was

designed to provide data on the operation and performance of the feed assembly

of the auxiliary propulsion subsystem for typical mission duty cycles. The
program calculates thrust, total impulse, pressures, temperatures, and flow rates
relating to operation of the accumulators, lines, and thrusters. The program
models APS operation by assembling operating data for an increment of time, cal-
culating the flow rates and heat transfer based on the temperatures and pressures
from the previous time increment, and calculating the new temperatures and
pressures. Time is then incremented, operating data assembled, and the process
is repeated.

Certain ground rules were used in developing the component models and the
overall program. All calculations in the program that involve propellant pro-
perties use a real gas equation of state. The environmental temperature was
held constant; the thermal conductivity of the insulation material was comstant
with temperature; the heat capacity of the accumulator and line walls was not
considered; the gas in the accumulators and lines was considered well mixed
(no thermal stratification effects), and a Nusselt number of four was used for

heat transfer calculations.
E=2
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The propellants used in the subsystem are stored as low pressure liquids and
are increased in pressure by a turbopump prior to delivery to the heat exchanger.
The heat exchanger thermally conditions the propellants before they are used by
the thrusters. The energy for turbopump and heat exchanger operation is provided
from the combustion of a portion of the conditioned propellants. The heat
exchanger used for conditioning and the turbopump used for increasing the liquid
pressure do not have instantaneous response, but rather have transients that are
complex functions of their detailed internal geometry. In the operating program
the conditioner assembly has a time constant of zero and is actuated when the
accumulator decays to its minimum pressure. This is equivalent to an actual
conditioner assembly which has a finite time delay and is actuated when the
accumulator decays to a switching pressure slightly above the minimum. The
propellants enter the accumulator at the design conditioning temperature and the
design steady-state flow rate immediately after conditioner actuation.

Approximations in the duty cycle description were required to limit calcu-
lation time. Early in the development of the program, it was shown that the
pulse mode portion of the duty cycle could be accurately approximated by using
an equivalent thruster flow concept; for example, a one thousand pound thrust
thruster that operates in a pulse mode for one tenth of a second and is idle
for nine tenths of a second can be approximated by an "equivalent thruster" of
one hundred pounds thrust that operates continuously. This allows the sequence
of events for the attitude control portion of a mission to be input much more
easily and allows the computétional time increments to be larger, making the
program easier and more economical to use. The program uses an approximate
conduction model to define line and accumulator gas heating., A study was
conducted to determine the validity of the heat transfer analysis technique by
comparing it to a more exact technique, Figure E~1 shows the result of the
study. The heat transfer analysis utilized in the operational program is more
conservative than the transient calculation, and, thus, shows a higher temperature
rise rate.

The program has the capability to evaluate two distinct venting modes. The
first is an automatic venting mode; this occurs when the accumulator and line
pressures raise to more than 105 percent of their maximum pressure. The accumu-
lator and lines are then vented to 95 percent of their maximum pressure. The

second venting mode is a manual vent. In this mode the accumulators and lines blow

E-3
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down to their minimum accumulator pressure and are then refilled to their
maximum pressure with conditioned propellants. The manual vent is used to
avoid the large variation in thruster mixture ratio which would result from
using the higher temperature propellants that would exist after a long nonuse

period.

E-1.2 APS Operating Performance - The operational program was utilized to

determine the proper insulation thickness for the accumulators and lines.
Figure E-2 shows the temperature rise rate for both the lines and accumulators.
As shown, the rate increases slowly as the insulation thickness is decreased.
At some critical value of insulation thickness the temperature rise rate rapidly
increases; thus for optimum results, the temperature rise rate was kept just
below the "knee" of the curve. It can be seen the temperature rise rate for the
gas in the accumulators is quite small. An insulation thickness of 0.1 in was
chosen for each accumulator which gives a temperature rise rate of 3°R/hour.
Insulation thi&%&ésses were chosen for the two propellant lines that give a
temperature rise rate of 20°R/hour for an environmental temperature of 600°R.
The baseline missions of Reference (a) , the 3rd orbit rendezvous and the
17th orbit rendezvous mission duty system, were analyzed utilizing the operational
program. Four parameters were varied to determine the sensitivity of the
subsystem performance to variations in operational characteristics. The
parameters were hydrogen and oxygen conditioning temperature and hydrogen and
oxygen regulation pressure, To establish sensitivity, the parameters were
increased to an arbitrary 5 percent above their normal value on an individual
basis and a mission was simulated. Figure E-3 shows the band of mixture ratio
excursions for the 3rd orbit rendezvous for nominal parameter values. The
‘maximum mixture ratio variation from the nominal value of 4.00 was + 0.50.
Figures E~4, E-5, E-6 and E~7 show the operational characteristics with the
parameters varied. A change in the hydrogen parameters has a much larger
effect on operational characteristics than does the same change in the oxygen
parameters. The most significant parameter was the hydrogen conditioning
temperature; increasing its value did not change the degree of mixture ratio
variation but did shift the scale of the variation upward; i.e., the range was
still + 0.50 but the mean for the mission was 4.10 instead of 4.00. The converse
was true when the oxygen conditioning temperature was raised; the range was
still + 0.5 but the mean was 3.90. Changing the regulator pressure had a

similar effect on operational characteristics. The range of mixture ratio
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variation was approximately + 0.50 and the mean was 4.00. Figure E-8 summarizes
the accumulative mixture ratio and resulting total impulse of the APS for nominal
and off-nominal operation.

The 3rd orbit rendezvous mission has only two long periods where there is
no actiVity. There is a period of 15 hours when the orbiter is on station and
there is a coast period of close to 3 hours immediately after separation with
no APS activity. During périods of no activity, the accumulator and line pres-
sures and temperatures increase due to environmental heating. While automatic
venting will keep the pressures within acceptable limits, the gas temperature
in the accumulator and lines is not controlled. The higher than nominal
temperatures cause a mixture ratio shift in the thrusters and requires the
thrusters to be able to operate satisfactorily at a higher than nominal mixture
ratio. Manual vent reduces this mixture ratio variation by purging the
accumulators and the lines of the warm gases. Figure E-3, in conjunction with
Figure E-9, shows the effect on mixture ratio of the manual vent concept. As’
shown in Figure E-3, the reduction in mixture ratio is quite marked. Manual vent
was not required during the second period of inactivity because the variation in
mixture ratio did not warrant the venting with the associated loss of propellant.

A similar analyses was performed for the 17th orbit rendezvous mission.
(Figures E-10, E-11, E-12, E-13, and E-14) The same basic conclusions can be
drawn about the 17th orbit rendezvous mission as were drawn about the 3rd orbit
rendezvous missionj increasing the parameters for the hydrogen increase overall
mixture ratio while increasing the oxygen parameters does the reverse.

The 17th orbit rendezvous mission is approximately three times as long
as the 3rd orbit rendezvous mission. This mission contains three periods of
APS inactivity of length eight, eleven, and forty hours. If manual vent is not
utilized after each of the long inactive periods, the mixture ratios of the
thrusters would be 4,76, 4.92, and 5.47. If manual vent was utilized, the
mixture ratios are reduced to 4,02, 3.90, and 4.19. Thus venting significantly
reduces the adverse effects associated with a large mixture ratio variation.
Even though the nonvented subsystem has much larger mixture ratio variations,
the overall mission mixture ratio is the same for the vented‘and nonvented
subsystems. Figure E-15 shows the subsystem operating characteristics for the
subsystem with automatic vent only.

A study was conducted to determine the effects of insulation degradation

on subsystem operating characteristics. To accomplish this, the thermal

E-12
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conductivity of the insulation on the tanks and lines was increased by a factor
of two and a factor of five. Figure E-16 shows the mixture ratio variation for
the above conditions compared to the reference insulation., During periods of
heavy usage, the mixture ratio shift caused by insulation degradation was
negligible; however, during periods of inactivity, such as the period following
separation, the mixture ratio variation doubled, but is still not excessive.
Figure E-17 presents the line temperatures versus time corresponding to the
mixture ratio variation of the preceeding figure. As shown, during periods of
inactivity the variation in line temperature is quite significant and is the

predominate cause of the mixture ratio changes.
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E~2. HIGH PRESSURE THRUSTER/FEED SUBASSEMBLY TRANSIENT

To determine the transilent characteristics of the feed subassembly and thruster
pulse mode performance, a digital computer ﬁrogram was developed to simulate the
auxiliary propulsion subsystem thruster start and shutdown transients. Transient
models were developed for lines, valves, orifices, regulators, and thrusters.

These components were integrated into a transient analysis computer program to
model the feed subassembly downstream of accumulators, accurately simulating line
lengths, diameters, and component locations. The study was confined to the feed
subassembly and thrusters because the relatively large volume of the accumulators
effectively decouples this portion of the subsystem from the conditioner assembly.

E-~2,1 Computer Program Description ~ The thruster model 1s used to analyze

the transient flow and combustion processes in the injector and thrust chamber.
Combustion and performance parameters are calculated assuming an equilibrium com-
bustion process. That is, it is a combustor model rather than a combustion model
because it calculates performance using idealized combustion data and does not
analyze actual combustion processes. The set of differential equations describing
the thruster are solved using the finite time increment Euler integration tech-
nique. The set of differential equations describing the mass and momentum in the
lines, valves, orifices, and regulator are solved simultaneously using Hammings
predictor-corrector integration technique. Program output includes a time his-
“tory of temperature, pressure, and weight flow at any desired location. In addi-
tion, performance parameters such as specific impulse, total impulse, mixture
ratio, and thruster chamber temperature are calculated.

E~2.2 Results - An evaluation was conducted to determine the sensitivity
of thruster performance to feed line diameter., Figure E-18 shows the variation
in minimum impulse bit with feed line diameter. The feed line network used
simulated the Orbiter B line layout. The figure shows that the minimum impulse
bit is a linear function of the line diameter in the range of a 20 percent
variation.

Figure E-19 shows a typical profile of the chamber, fuel injector, and
oxidizer injector pressure. The valve signature utilized for this study had
a 20 ms delay, a 10 ms time to full open, 20 ms full open time, and 10 ms time
to full closed. The fuel valve led the oxidizer valve by 2 ms. The chamber

pressure rose slowly from the time the valves started to open until ignition
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occurred at 25 ms; the chamber pressure then rose rapidly as the valves opened
more fully, and then dropped sharply as the valves began to close. At 60 ms

the valves were fully closed and the pressures decayed in 100 ms. Both injector
pressures closely followed the chamber pressure trace.

A second analysis was conducted to determine transient thruster performance
as a function of the full-open time of the valves. For this analysis the thruster
was connected to short large-diameter fuel and oxidizer lines to eliminate
line size effects., Figure E-20 shows the impulse bit sizes obtained and Figure
E~21 shows the integrated vacuum specific impulse of the thruster as a function
of fully-open valve time for a first pulse.

Figure E-22 shows the response characteristics for a thruster whose
valves are open for 90 ms. The characteristics of such a relatively long pulse
are a function not only of the thruster geometry but also of the feed assembly.
The feed assembly dynamic characteristics are reflected in the cyclic oscillation
of the oxidizer and fuel injector pressures which were induced by the fuel and
oxidizer valves opening. The result is a decrease in chamber pressure énd a
variation in impulse from the expected value.

The line surge pressure experienced when the propellant valve is closed
is a complex function of line diameter, the length of time the valve was open,
and the closing time of the valve; however, the maximum surge pressure was less

than 40 percent of the regulation pressure and thus was not considered a problem.
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APPENDIX E
REFERENCES

(a) Space Shuttle Vehicle Description and Requirements Document: NASA~MSFC,
dated 1 October 1970.
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APPENDIX F
SUBSYSTEM WEIGHTS AND SENSITIVITIES

One of the major considerations involved in design evaluation of the APS is
total subsystem weight. Comparison of various subsystem concepts and selection of
the final baseline design required an accurate and consistent means of weight
evaluation. Optimization of selected APS concepts required a rapid and accurate
means of generating APS weights for different design conditions so that a minimum
subsystem weight could be obtained. In order to generate accurate, representative,
and consistent subsystem weights for many different design points, an automated
means of weight evaluation was required. To fulfill this need an APS design and
sizing computer program was developed. This program allows definition of subsystem
weight and performance for any set of specified design conditions and serves as a
compact library of representative component weights, volumes, and performance for
a high chamber pressure turbopump APS.

Using this computer program, total subsystem weights were generated for com-
parison of subsystem concepts considered., After concept selection, the subsystem
design point was optimized by use of linear weight sensitivities. These sensi-
tivities show the effect on total subsystem weight of varying single design
variabies from their baseline values.

APS weight sensitivities to design variables for the final Subtask B baseline
APS are shown in Figures F-~1 to F-3 for Orbiter B, Orbiter C, and the Booster,
respectively., The basis for design point selections and the reasons for the

sensitivity effects are discussed in the following paragraphs.

MCDONRNNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



REPORT MDC E0298

HIGH PRESSURE APS

SUBTASK B

12 FEBRUARY 1971

8 4311940
$379VIYVA N9IS30 OL ALIALLISNIS LHOIIM

1NIOd N9IS30O

‘310N

.Hl

—.+

Zt

¢+

SOILYY 93§ - JWIL ISNOSIY dp ~ UNLVHIAWIL
4NSSI¥d YOLYINKNIIY AT8W3SSV ININOLLIONOD Vz NI/387 - dO¥Q 3UNSSIU INM | NYT713d0¥d WNWINIW L3 TNI HILSNYHL
g Z ) S RO 0L o1 08 005 00 0ot
f T T ¥ I T T f T T r T T T
NIW , /HS 4 ;
- - - H —
. o . .
v, NI/397- J80SSIA VL . o N
9VN0LS INVTIId0Nd Vg NI/487 —|3UNSSIud ¥3aNVHO OLLYY NOISNYJX3 OLLYY 3UNLXIN -
08 09 ot 0z 0001 009 002 0zl 08 or 8 9 b Z
1 | 1 i I ] ] 1 1 i 1 { Ly ¥ ) L2 L
30NLILLY.
il \0/ 1o ]
g NOLLYISNYYL

ﬂ+

7+

¢+

1NIOd NDIS3a Ly 043Z OL A3INIUIJTY G713 — LHIIIM WILSASANS

FIGURE F-1

F-2

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



REPORT MDC E0298

HIGH PRESSURE APS

SUBTASK B

12 FEBRUARY 1971

2 ¥3Ligyo
$3TGVIYVA NOISIA OL ALIAILISNIS LHOIIM

1NIOd N9IS30 O
:310N

FIGURE F-2

ﬂl\

™
2+

£+

I+

N+

solLvy 93§ - IWIL ISNOJSIY Yo ~ JUNLVHIWIL
NSS4 YOLVINNNIDY A18W3SSY DNINOLLIGNOD Vz NIi/397 — d0¥Q 3UNSSIUd AN | yu1340Hd WNWINIW LI TNI HILSANHL
£ 4 <1 01 5’0 0s1 001 0s 005 00¢ 001
L { 4 H L] ¥ 1 B i T 1 i L 1 I
NS, XYW
o/ \ Y - —— - -
NIW,/MSy
,,,,, N - % J
; i N
v, NI/487 - 3UNSSIUd WNVL :
3OVH0LS LNYVT13404d v, NI/497 - 34NSSIYd YIGHYHD 01.LYY4 NOISNVdX3 OLLYY JURLXIN
08 03 0f 0 0001 009 002 021 08 o 8 9 b z
T i H ¥ |} 1 | | B ¥ v v ¥ L ¥ i ¥ ¥ I L}
‘ JONLILLY
NQ \} \lj - O/I‘.Olll - .
Gt | NOLLYISNVYL |
J ] i

M+

INIOd NDIS30 1Y 043Z 0L 030N3Y¥343Y 87D — LHIIIM WILSASENS

F-3

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



REPORT MDC E0298

HIGH PRESSURE APS

SUBTASK B

12 FEBRUARY 1971

FIGURE F-3

001 .

ﬁl

I+

N+

mr

~+

4315008
SITEVIYVA NIIS3A OL ALIAILISNIS LHOIIM
INIOd N9IS3Q O
310N
SOILVY : 93 - JWIL ISNOJSIY . Yo ~ JUNLYYINIL
JUNSSIYd HOLVINWNDIY' ATSWISSY DNINOILLIONOD VzNI/387 - OO JUNSSIYd N ' LNVTIIJ0N WNWINIW 13 TNI ¥ILSNANL
£ ¥4 ST 0’1 0 0sT 001 08 006 00¢
' ] H 1 I 1 i I 1 ] 4 ¥ ] 1)
} - I% - NQ §\
NI &5 _ A 4
- A - L
v, NI/487 - 34NSS3d L S R
39vH0LS LNVT13d0Yd V7 NI/487 - 3UNSSTUd YIBWVHI, ! OLLYYH NOISNVJX3 | | OLLVY JUNLXIK -
® 09 o 0 0001 009 0z oz 08 o CE I R £
H I 1] ] H ki P - } ¥ . i ] ¥ i ¥ i 1 ] 1 1)
I) . ensmamed y— ~] |Ilj - -
N_._ b
No - - o p—
o . . .

N+

g+

£+

1NI0d N9IS3a 1V 043Z 0L 030N3y343Y

873 — LHIIIM W3LSAsans

MCDONRNELL DOUGILAS ASTRONAUTICS COMPANY = EAST



HIGH PRESSURE APS REPORT MDC E0298
SUBTASK B 12 FEBRUARY 1971

F-1. SENSITIVITY TO DESIGN VARIABLES

The sensitivity to thruster mixture ratio is primarily a result of thruster
performance variation. Thruster specific impulse is maximum at a mixture ratio
of approximately 3.5 to 1, and, at this mixture ratio, propellant weight is a
minimum. The slight shift of the minimum weight to a higher mixture ratio is
due to the higher storage efficiency of the liquid oxygen when compared to liquid
hydrogen, i.e., lower hardware weight.

Sensitivity to thruster expansion ratio is a result of a tradeoff between
thruster weight and performance. For an increased expansion ratio, the weight of
the thrusters increase, but the thruster performance improves, resulting in a
decreased propellant weight., The effect of changing attitude control and +X
translation thruster expansion ratios are shown independently for the orbiters.
The total impulse allocation between the two is appréximately 90 percent for +X
translation maneuvers, Only 6 orbiter thrusters are used for +X translation and
the remainder are used for attitude control. These effects result in a different
optimum for the two thruster types. With the attitude control thrusters, an
increase in expansion ratio results in only a small propellant weight reduction
because of the small impulse; conversely since there are a large number of attitude
control thrusters an increase in expansion ratio results in a greater weight
increase, The net effect is, as shown, almost no net weight change over a large
expansion ratio change., The selected value of 60:1 was based on the fact that, at
this ratio, no imstallation problems were foreseen and weight was low. A different
effect is shown for the +X translation thrusters, Here a large total impulse is
involved and small thruster performance improvements result in large propellant
weight reductions. Since only a small number of thrusters are involved, the hard-
ware weight penalty for increasing expansion ratio is minimal. The results of these
two effects are that high expansion ratios are attractive for the +X translation
thrusters. A value of 120:1 was selected for these, as it provided near minimum
weight and acceptablé volumes.

The sensitivity to chamber pressure is a result of a tradeoff between condi-
tioner assembly bypass flow and hardware weight. Conditioner assembly bypass flow
decreases with increasing chamber pressure, due to real gas effects which cause
slight decrease in the enthalpy change required for conditioning. This is illus-

trated in the pressure~enthalpy diagram of Figure F-4, which shows that as the
F-5
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subsystem pressure increases the enthalpy required for overall propellant condition-
ing decreases, Two limitations have been placed upon the conditioner:

(1) the heat exchanger hot side pressure is limited to a minimum of 30 lbf/inza

to allow testing at sea level

(2) the turbine pressure ratio is limited to 25:1 as a practical limit on

specific power.
As the chamber pressure is increased to the point where either of the above limita-
tions is reached, the bypass flow will start to increase to balance the increased
pump head requirements. This flow increase allows less oxygen addition in the heat
exchanger and the overall conditioner mixture ratio goes down with a resultant
decrease in conditioner performance, Hardware weight decreases as chamber pressure
increases due to component size reductions, until increases in pump weights, due to
head requirements, become excessive. Thus propellant weight and hardware weight
tradeoff result in a minimum total subsystem weight at a chamber pressure of about
500 lbf/inza.

The sensitivity to propellant storage tank pressure is a result of a tradeoff
between turbopump and storage/pressurization assembly weight. As the tank pressure
increases, the amount of pressurant required increases, and when minimum propellant
tank wall thickness is exceeded, propellant tank weight increases. Conversely the
turbopump weight decreases with increased tank pressure due to the increase in pump
net positive suction head. Combining these two effects results in a minimum weight
subsystem at tank pressures of approximately 25 lbf/inza for the hydrogen tank
and 30 lbf/inza for the oxygen tank,

The sensitivity shown for the propellant temperature is actually
a sensitivity to the minimum propellant temperature allowed at the thruster inlet.
The continuous increase in weight with increased propellant temperature is a result
of the increase in conditioning enthalpy requirements and the correspcnding increase
in propellant weight for increased bypass flow. The propellant temperatures were
limited to a minimum of 200°R and 350°R for the hydrogen and the oxygen respectively
to allow the use of ejither regenerative or film cooling for the thruster assemblies.

The sensitivity to feed line pressure drop is a result of a decrease in line
size as the allowed pressure drop increases, Eventually, the additional pump head
incurred by increased line pressure drop will raise the turbopump weight and the
conditioner bypass flow. Although a minimum does exist, the overall effect upon

total weight is small compared to the effect of other design variables. The 40

F-7
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lbf/inza line pressure drop was seiected because it resulted in near minimum weight
while keeping the propéllant line velocity relatively low.

The sensitivity shown for conditioning assembly response time is a result of
the increase in accumulator volume, and thus accumulator weight, necessary for APS
operation during conditioner start up. The response time of 0.5 seconds was deter-
mined for the selected propellant conditioning assembly, as discussed in Appendix D-6.

The sensitivity to accumulator pressure ratio is primarily a_result of the
change in accumulator weight., An increase in the switching to minimum pressure
ratio (Psw/Pmin) results in a decreased accumulator volume since more mass is
obtained during the large pressure blowdown., An increase in the maximum to switch-
ing pressure ratio (Pmax/Psw) produces an increased maximum accumulator pressure
resulting in an increased accumulator weight. Thé design point shown was selected
based on the accumulator analyses presented in Appendix D-6. The pressure ratios
selected result in the minimum total subsystem weight for the requirement of less

than 50 conditioner assembly cycles per mission.

F-8
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F~2, SENSITIVITY TO SUBSYSTEM REQUIREMENTS

In addition to the APS weight sensitivity to the various design variables,
the sensitivity to the subsystem requirements were evaluated. These sensitivities
for Orbiter B, Orbiter C and the Booster are presented in Figures F-5 to F-7.

An explanation of the subsystem sensitivity to each of the design requirements is
given below.

The sensitivity to thrust/thruster is a result of a combination of the increase
in thruster weight as thrust level increases and the decrease in propellant weight
due to an improvement in thruster specific impulse. This sensitivity was generated
for a constant total thrust level for the APS (i.e., fixed conditiomer capacity).

The sensitivity to subsystem total thrust is a result of an increase in hard-
ware weight (i.e., accumulators, feed lines, valves, conditioner assembly) for an
increase in total thrust capabilities. This sensitivity uses a comstant thrust
level per thruster.

The sensitivity to total impulse is a result of an increase in propellant,
storage tank, and pressurization system weights for an increase in total impulse
requirements. )

The sensitivity to the number of thrusters is simply a result of the change in
the total number of thrusters on the vehicle.

F-3 Summary of Results - After the design requirements were established for

the selected subsystem concept, a component weight breakdown summary was defined
for reference during the component evaluation phase. The component weight break-
downs for the different vehicles are presented in Figures F-8 to F-10. In addition
to the weight of each component, the design requirements of each component are

shown in Figures F-11 to F-~13 for the selected subsystem designs.
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WEIGHT - LB VOLUME - FTS
SUBSYSTEM ELEMENTS 10 T OF-
/) ) 2 ?
PROPELLANT AND COMPONENTS
“TOTAL PROPELLANT 469 1737
PROPELLANT TANKAGE 225 138 ‘108 | 25
PRESSURANT AND TANKAGE 34 8
INSULATION 30 4
CONDITIONING ASSEMBLY
HEAT EXCHANGERS (3) 259 297
TURBOPUMPS (3) 8 9
GAS GENERATORS (3) 37
FEED ASSEMBLY
ACCUMULATORS (1) 437 200 17 7
LINES 11 146
REGULATORS (6) 28 29
VALVES (THRUSTER ISOLATION(2)| 134 122
AND MANIFOLD)
THRUSTER (18) 609
VENT AND LINES [ 7
TOTAL SUBSYSTEM 5310 1157
* ATTITUDE, TRANSLATION

APS COMPONENT WEIGHT BREAKDOWN
Booster
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WEIGHT - LB VOLUNE - FT3 |

SUBSYSTEM ELEMENTS W | 0, W, |0
PROPELLANT AND COMPONENTS
TOTAL PROPELLANT 6334 | 23,552
PROPELLANT TANKAGE 1036 a7 1449 | 332
PRESSURANT AND TANKAGE 450 79
INSULATION . 248 50
CONDITIONING ASSEMBLY
HEAT EXCHANGERS (3) 255 297
TURBOPUMPS (3) 76 124
GAS GENERATORS (3) 37
FEED ASSEMBLY ,
ACCUMULATORS (1) 679 32 9| 12
LINES 146 152
REGULATORS (6) % 29
VALVES (THRUSTER ISOLATION(2)| 105 90
AND MANIFOLD) o7
THRUSTER (18/6) *
PROPULSIVE VENT AND LINES 275 184
TOTAL SUBSYSTEM 35,879 1822
* ATTITUDE/TRANSLATION '

APS COMPON,ENT WEIGHT BREAKDOWN
Orbiter B
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WEIGHT - LB VOLUME - FT®
SUBSYSTEM ELEMENTS . 5 10
/ 2 7 )
PROPELLANT AND COMPONENTS
TOTAL PROPEL LANT 6487 | 23,748
PROPELLANT TANKAGE 1338 an 1485 | 335
PRESSURANT AND TANKAGE 454 80
INSULATION ’ 317 63
CONDITIONING ASSEMBLY
HEAT EXCHANGERS (3) 255 297
TURBOPUMPS (3) 75 124
GAS GENERATORS (3) 37
FEED ASSEMBLY
ACCUMULATORS (1) 700 332 30 | 12
LINES 162 169 :
REGULATORS (6) 2% 29
VALVES (THRUSTER ISOLATION(D| 111 9
AND MANIFOLD)
THRUSTER (27/6) * 1,244
PROPULSIVE VENT AND LINES 269 180
TOTAL SUBSYSTEM 37,070 1862
* ATTITUDE/TRANSLATION

APS COMPONENT WEIGHT BREAKDOWN
Orbiter C
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APPENDIX G
TECHNOLOGY CRITIQUE

Space shuttle control requirements and APS installation considerations dictate
APS thrust levels of approximately 1850 1b per thruster. This thrust level,
combined with space shuttle reuse requirements of 100 missions without major refur-
bishment are far beyond the requirements of any current auxiliary propulsion sub-
system, and no‘components for an APS with these requirements are in existence. The
APS design resulting from the NASA conceptual subsystem definition studies is con-
sidered to be capable of satisfying all requitements; however, to make the APS design
as realistic as possible it must be based on a balance between APS performance and
component technology extemsions. This results in a design that neither requires
any technology developments that are considered to be unrealistic nor is based
completely on availablé component technology. The design requires technology ad--
vances in areas where they appear reasonable and the performance gains resulting
from the advances warrant the extension. The following paragraphs discuss the
specific areas of technology concerns that exist with the High Pressure APS compo-

nent and assembly_deéigns.
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G-1. PROPELLANT STORAGE ASSEMBLY TECHNOLOGY

The propellant storage assembly is made up of an aluminum pressure vessel
with high performance insulation, an active vent/thermal barrier and an outer
protective shell; a propellant positioning subassembly; and a pressurization
subassembly, During APS studies, this tank design was established as the best
compromise between overall APS performance and technology concern. Specifically,
there are: venting of the outer tank jacket, design of the propellant positioning
subassembly, and the cooling approach with its associated controls.

The concern with jacket venting is primarily that a small pressure gradieant,
developed between the inner and outer shells during venting, could cause crushing
and thereby significantly alter the heat transfer characteristics of the multilayer
insulation.  The tank insulation subassembly design requires pressurization of the
outer shell during boost and entry to prevent collapse pressure loads on the
fiberglass outer shell. This outer shell is provided because it is known that
condensation of air or water vapor within the multilayer insulation severly de-
grades insulation performance. -Without the shell, the condensation would most
certainly occur during entry as ambient air was admitted to the vehicle and came in
contact with the cold insulation. The alternative to a fiberglass shell is to pro-
vide the tank with a vacuum jacket capable of withstanding collapse pressure loads.
With this approach the weight penalties:are high. Data are available which indicate
that multilayer insulation of this type will freely vent without significant pres-
sure gradients when no protective covering is used; however, data are not available
to show that repeated pressurization and vent cycles will not alter the heat trans-
fer characteristics of high performance insulation or to show that venting can be
readily accomplished when a protective covering is used,

The principal concern with the design of the propellant storage assembly is
the propellant positioning device., Data are available which clearly demonstrate
the validity of the surface tension approach for propellant acquisition. Surface
tension screens fabricated to date have, however, been limited to approximately
1 ft in diameter. Basic fabrication limitations indicate the screen liner config-
uration should be limited to tank diameters of 5 ft or less. The APS capacity
requirements dictate a hydrogen tank size equivalent to a sphere 15 ft in diameter.
Use of multiple tankage does not reduce this requirement appreciably. A second and

~ significant requirement for the surface tension screen design is that it must be
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designed for cryogenic liquid; the design used must prohibit vaporization within
the contained propellant as this could result not only in a loss of pressurant, if
the screen liquid/vapor interface were broken down, but also vapor ingestion by the
oxygen turbopump which could be catastrophic. The passive surface tension screen
approach'for propellant positioning is the only reasonable method for the shuttie
appliéation. Other devices sﬁch as bladders, diaphragms, or bellows are not
practical. The cﬁrrent positioning subassembly design consisting of ring channels
. offers a high probability of satisfying all requirements; however, the design is
unique and there is not sufficient background on éryogenics to conclusively prove
that it will satisfy requirements. The ring channel design has only point contact
with the tank walls and thus heat transfer to the propellant in the containment
cavities should be near zero. The design allows checkoﬁt of the contaimment device
prior to launch and is installed so that boost vibration accelerations will not
affect the interface stability. With this approach, screen size requirements are
quite reasonable and'there should be little difficulty in_obtainingveffective pore
sizes that will give adequate containment capability; however, significantly more
effort will be required to establish the ring chénnel screen design and to demon-
strate achievement of a satisfactory design.

One of the requirements of the storage assembly is to provide a storage tank
heat barrier and cooling to the turbopumps which will be mounted in the vicinity
of the tanks. The significant area in the vent cooling subassembly is turbopump
cooling. These pumps must be kept at liquid temperatures during allitimes when
the APS is active, and this must be done in the presence of two standby, ambient
temperature, turbines and one hot operating turbine. The conventional approach
to pump chill-down is to circulate propellant through the pump for a short period
of time prior to start. However, this is not acceptable for this application
because of the number of starts and associated large propellant loss. The con-
ditioner response time must be of an order of less than a second or excessive
accumulator weight penalties will result. The accumulator is sized to provide
operation during the start transients but the size and weight are quite sensitive
to conditioner response time. The current design provides an isolated compartment
for all of the turbopumps. All heat into this compartment is intercepted by a
cooling loop. This design has been based on only preliminary installation lay-
outs and on preliminary analysis of the turbopump assembly heat transfer rates.

The current installation arrangement requires a heat short to the vehicle structure
to provide a conduction path from the turbine to the structure and limit conduction

down the shaft and housing to the pump end of the turbopump assembly. c-3
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G=2. CONDITIONER ASSEMBLY TECHNOLOGY

The conditioner assembly provides all pressure and thermal conditioning
of the propellants required by the thrusters. The assembly is made up of the
turbopumps, the propellant heat exchangers, the gas generator, and their associated
controls. As with the sto;age‘tank assembly, APS studies have shown that the
turbopump désign offers the best balance between overall subsystem performance and
the technology risk involved with subsystem dévelopment. There are, for each
component, specific technology areas that are of concefn. Many of these are
interrelated because of the strong iﬁterdependence of component interfaces but,
for clarity, they are discussed under the individual component headings below.

The basic complexity of the component interfacés in this assembly makes the
performance of the overall integrated assembly a technology concern. The focal
point.for this concern is control of the assembly. As identified previously,
control of pressure aﬁd temperature is a mandatory requirement. APS studies to
date have not fully explored potential tolerances within the assembly, the accuracy
of sensors and controls nor have they defined the three sigma performance boundaries.
For this reason, more detailed analysis of thebintegrated assembly, in parallel with

exploratory programs on the specific components, is a vital technology requirement.
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G-~3. TURBOPUMP TECHNOLOGY

The turbopump assembly design is considered to be realistic; however, there
are several areas which push or exceed current technology limits and there are
not sufficient datavto fully validate the cufrent component design and performance
predictibns. Without question, the turbopump is one of the most critical components
in this assembly. .

Theré are three primary areas of concern in the turbopump assembly. These are:

(1) 1life capability

(2) response

(3) operating temperature of the turbine blades.

Life requirements for the turbopump are several orders of magnitude above those
of current rocket engine turbopumps. Reductions in the required number of turbopump
operating cycles would result in a large increase in subsystem weight, since in order
to limit operating cycles, the accumulator would have to be enlarged. The design
life requirements for the assembly are currently 5000 operating cycles over a 100
mission vehicle life. Service life of this order has been achieved in other indus-
tries with other types of turbo-machinery. In general, these applications have been
far less stringent in terms of the ability to cool and/or lubricate the components.
To verify that life predictions are reasonable, significantly more effort is required
in this area.

Almost all previous turbopump applications have provided a relatively slow pump
spinup during which propellant was bled through the unit to provide cooling and lub-
rication. In this application fast pump start times (less than one second) are man-
datory and bearing loads or wear induced by these fast start transients will have a
significant impact on the life capaBility of the unit. Reduction in response
requirements would result in a large increase in subsystem weight since, when reduced,
the accumulators must be sized to store additional propellant to supply the thrus-
ters during the start transient. The acceleration levels for pump spinup that are
available with a high pressure, high torque turbine are entirely adequate to provide
the response required. The principal concern is the ability of the cryo-lubed
bearings to respond to the high shaft acceleration rates and the resultant effect

on bearing life.
The turbines are supplied with hot gas directly from the gas generator; thus

the turbine blade temperature is approximately 2000° Rankine. This is near the
point where almost all materials exhibit extreme strength degradation with small
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changes in temperature. Provision for blade cooling is quite complex and very
undesirable for the assembly. Reduction in gas generator temperature to alleviate
this problem is feasible, within limits, but would result in a somewhat higher sub-
system bypass flow and increased subsystem weight. The true significance cannot be
fully assessed without an in-depth analysis of the overall assembly to define turbine
inlet temperature tolerances and to define the accuracy of gas generator control in
maintaining turbine inlet temperature. Significantly more data is also required to
define the true effect of temperature variations on turbine blade life and to define
the neminal life cagability at the deéign temperatures.
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G~4. HEAT EXCHANGER TECHNOLOGY

This component is the most critical area in the subsystem from a technology
standpoint. Technology developed for a similar application may be applicable, but
extensive modifications and extensions are required. Actively cooled fins have
been utilized previously on rocket engine injectors to maintain combustion stability.
An extension of this technology is applicable to the heat exchanger as is previously
developed regeneratively cooled engine chamber technology. Areas of technological
concern are primarily the ability to

(1) actively cool the structure and heat transfer surfaces to maintain struc-

tural margins

(2) provide satisfactory ignition and uniformity of combustion.

G-4.1 Heat Transfer and Structural Margins - Heat transfer in the heat exchan-

ger is a critical technology from several standpoints. First, the ability to cal-
culate and provide required film coefficients is not a well-established science and
tests will be required to provide design data. Second, the large AT's in the heat
exchanger can provide extremely high thermal stress loads and the cycle life will
be adversely affected. Third, thermal shock loading in the heat exchanger is severe
because of the very rapid response required for the conditioner assembly. This
thermal shock loading in conjﬁnction with the required number of operating cycles
provides an area of technological concern.

G-4.2 Reignition and Uniform Combustion - The requirement for low pressure,

low flow rate injection and recombustion in the turbine exhaust gas stream is unique
and represents a technology area that reqiires development and a feasibility
demonstration. Control and heat transfer rates and metal wall temperatures will
be sensitive to the mixing efficieﬁé§ tﬁét can be obtained in the staged combustion
region. Hot streaks and uneven mixture ratio distribution will degrade the control
capability and thereby reduce performance and cycle life potential.

Reignition of the turbine exhaust gas after mixing with supplemental oxygen
is accomplished by pré—ignition of the oxygen mixed with a small amount of hydrogen
prior to injection and mixing with the turbine exhaust. The pre-ignition concept
is fairly well established technology. One form of this ignition technology has
previously been demonstrated in an Aerojet Liquid Rocket Company sponsored program
to evaluate an advanced combustion cycle for axygen/hydrogen engines. During the
course of this program an oxygen rich gas generator was operated successfully at a
mixture ratio of approximately 100:1.
' G-7
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G-5. GAS GENERATOR TECHNOLOGY

At the design operating temperature of 2000°R, the gas generator can be
considered a simple uncooled unit. No problems are anticipated in the development
of this unit from a thermal standpoint. Performance and ignition requirements
appear reasonable and, if required, cooling can be provided with minimal complexity.
Thermal fatigue in this assembly is not considered a significant technology problem.
The principal concern is with the gas generator combustion temperature fluctuations
which will have a significant impact on the life of the turbine and the required
control valves. Active vernier control valves are required to maintain turbine
flow and horsepower with variations in inlet propellant temperatures and pressures.
This linked bipropellant valve must be both quick opening and provide throttling
capébility around the open positioh. Combustion temperature sensing and feedback
modulation control to the oxygen valve is required in addition to the other
throttling requirements. This results in a complex valve which may be difficult

to devélop.

G-8

MCDORINELL DOUGLAS ASTRONAUTICS COMPANY =~ EAST



HIGH PRESSURE APS REPORT MDC E0298
SUBTASK B 12 FEBRUARY 1971

G-6. ACCUMULATOR/REGULATOR TECHNOLOGY

This subassembly consists of the gas storage accumulators, pressure regulators,
propellant supply lines, and the thruster assemblies. The accumulator is a simple
high pressure, aluminum pressure vessel. The concerns with this component are:

(1) the number of pressure cycles (5000) that the unit shall be subjected

to over a 100 mission life

(2) the reusability of the high performance insulation on the accumulators

| and supply lines.

Regarding the first of these, more information is required on the pressure cycle
fatigue characteristics of aluminum at low temperature to confidently define the
safety factors to be used for the design and hence the weight of the accumulators.
With regard to insulation, the lines and accumulators are insulated with a multi-
layer Mylar insulation similar to that used on the propellant tanks. Condensation
effects during entry will have the same impact, however, this insulation is not as
critical to APS performance as that on the tank and some degradation of insulation
effectiveness could be allowed. Current expectations are that a flexible evacuated
cover could be used around the insulation to avoid internal condensation. This
arrangement would result in crushing cycles on the insulation within the atmosphere.
In the extreme case, where insulation effectiveness becomes a more significant
factor in APS performance and the multilayer type could not be made to operate
satisfactorily, vacuum jacketing of the lines and accumulators, with the attendant
weight increase, would be required. More data on the crushing/condensation char~
acteristics of HPI type insulation application is required technology for APS
development.

One of the concerns with this subassembly is the pressure regulators, The
pressure regulators required must be capable of positive shutoff, high accuracy,
high flow rate capability, and high cycle 1life. Mechanical regulators with the
capacity, accuracy, and life required have not been developed previously for
this type application with cryogenic propellants. Investigation of the capability
of conventional mechanical regulators indicates the requirements are difficult to
satisfy but probably can be achieved. The current APS design postulates a
mechanical type regulator; however, a motor driven throttle valve for pressure
regulation must also be considered. Preliminary analyses indicate that require-
ments could also be satisfied with this approach and that response would be

adequate. No such unit has been designed and data are not available to confirm
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this approach. Since this is the case, a parallel technology effort should be
initiated. One path should concentrate on mechanical regulators and the second on
an electronically controlled, motor/valve approach. Based on the result of these

efforts, a final selection of the type of pressure control could be made.
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G-7. THRUSTER ASSEMBLIES

The thruster assemblies were an obvious concern when emphasis was first
given to gaseous oxygen/hydrogen APS, and exploratory research programs were
initiated by NASA on thruster development, ignition, cooling, and valves. To
date these programs and the work of several propulsion companies have shown that
ignition and performance goals can be relatively easily accomplished. Thruster
cooling programs will aid in identification of design criteria and the type
of cooling to be used for a prescribed cycle life. Valve development programs are
not far along, but, based on design effort to date, APS requirements can be achieved
without extreme difficulty. Further effort applicable to the thruster assemblies
should stress certain aspects that have been identified by the APS studies to be
significant. Specifically these are:

(a) Thruster cooling/life. The current APS thrusters use a combination of

regenerative and film cooling. The chambers are regeneratively cooled

with hydrogen to a nozzle expansion ratio of 11:1, The remainder of the

nozzle is filmed cooled with hydrogen. Additional film cooling is also
required in the chamber to supplement the regenerative cooling. This
approach was used to take advantage of the high performance of a regen~-
erative thruster while maintaining the ease of nozzle scarfing possible
with a film cooled design. Two concerns exist with this approach. These
are:

(1) current thermal cycle forecasts for the thruster are approximately
50,000 cycles for 100 shuttle missions. These predicted values
are subject to change as shuttle design progresses and alternate
mission timelines are investigated. Inherent in regenerative
thruster design is a high thermal gradient in the cooled wall.
Thermal predictions show that gradients are compatible with the
required fatigue life, but this has not been demonstrated.

(2) since the thrusters are completely buried within the vehicle (low
radiation cooling), nozzle film cooling must be effective since
nozzle temperatures would approach the combustion temperature
during a steady burn.

Calculation of film cooling effectiveness is approximate and boundary

layer mixing could cause appreciable analysis errors. Significant
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errors in the amount of film cooling required and life limitations

could reduce performance to the point that the selection of a partial
regenerative cooling approach may not be the best selection. Further
research effort in the thruster cooling area must resolve these concerns.

(b) Minimum Impulse Bit. In the present shuttle concept, the orbiter will

remain docked to the space station during all extended stays in orbit.
Under this mode of operation APS design is not highly sensitive to
minimum impulse bit. If the method of operations is to maintain both
spacecraft independently in a station keeping mode, then under these
conditions, a very low minimum impulse bit delivery would be highly
desirable. The most attractive means of reducing impulse are:

(1) to use the thruster igniter only

(2) to use hydrogen or oxygen as a monopropellant.

The current approach to thruster design precludes the latter of these
since the primary propellant valves are linked to a common actuator.
Use of the igniter as an independent thruster, however, is a distinct
possibility and should be inVestigated further in anticipation of the

need for extended limit cycle operationm.
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APPENDIX H
SUBSYSTEM RELIABILITY

The ability to withstand one component failure but retain full mission capa-
bilities, and the ability to withstand two component failures but retain sufficient
contfol to ensure crew survival, are prime APS requirements. To achieve these capa—~
bilities, an analysis of subsystem reliability was required. This analysis con~-
sisted of:

(1) incorporating component redundancy into the baseline subsystem design to

ensure reliability

(2) analyzing failure modes of the subsystem

(3) evaluating baseline design reliability on the basis of failure mode

analysis results.

The following paragraphs discuss these analyses and delineate the malfunction

detection methods required.
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H~1. GUIDELINES AND CONSTRAINTS

To provide a basis for reliability analyses, the following criteria were
established:

(&D)

(2)

(3>

(4)

(5)

(6)

)]

B-2 -

structure, such as lines, tanks fittings, and static seals were assumed

to have a reliability of 1.0

thrusters will not fail in a catastrophic mode as long as propellants are
supplied at an acceptable pressure and mixture ratio

a shutoff valve will not fail open prior to first flight operational cycle,
and internal leakage will be of a magnitude which will not degrade subsystem
operation

a "NORMALLY OPEN" shutoff valve will not fail closed prior to first flight
operational cycle

liquid propellant storage tanks will not normally require venting, other
than that necessary to satisfy the thermodynamic venting requirement

the subsystem will be considered operational up to the point aﬁ which one
additional failure jeopardizes safe mission completion

component external leakage can be virtually eliminated by special attention
to component design details. Redundancy for this failure mode will not be

considered in this study except for turbopump and heat exchanger leakage.
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H-2. APS SCHEMATIC

Figure H-1 presents the high pressure subsystem schematic with complete com-
ponent rédundancy for Orbiter B. Subsystem schematics for Orbiter C and the Booster
are similar. Structural components such as tanks, accumulators, and lines are not
duplicated, on the assumption that structural reliability is equal to 1.0. The
. conditioner assembly incorporates two completely redundant assemblies for the two-
failure fail-safe requirement. The remaining components are either doubly redun-
dant, or are designed in such a manner that the function of a failed component can
be met by another component, thus meeting APS requirements.

In general, the philosophy in implementing fail-operational/fail-safe redundancy
is to provide triple redundancy where feasible. Three parallel redundant regulators
are provided for each pressure regulating function. Three completely independent
conditioning assemblies are provided for each propellanf loop. When the primary
conditioning assembly fails, it is isolated and a new conditioning assembly is
activated, Each thruster has isolation valves in series with the thruster propel-
lant valves, allowing individual isolation of a failed-open thruster. A second set
of valves isolates each propellant manifold to provide isolation of a double thrus-
ter valve failure and its individual isolation valve. Tanks, accumulators, lines
and fittings were considered structure, and redundancy was not provided. Figure
H-1 depicts the depth of redundancy provided for each function, and shows the rela-
tionship of each component's operation and failure to a successful and/or safe
mission.

The analysis of the failure modes of this subsystem design schematic and the
resultant reliability is discussed below.
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H-3., FAILURE MODE ANALYSIS

The effect upon subsystem operation of component failure was analyzed using two
basic reiiability tools; the functional flow diagram and the failure mode and effect
analysis. APS functional flow diagrams are presented in Figure H-2, These diagrams
display, in a logical manner, the relationship of each component function and
failure with the completion of a successful mission and/or a safe return from earth
orbit. These diagrams also exhibit the depth of redundancy and the fail-operational/
fail-safe features for each component failure mode.

The orbiter APS was divided into the following functional groups:

(1) 1iquid propellant storage and pressurization

(2) propellant conditioning

(3) propellant accumulation and pressure regulation

(4) propellant distribution and thrusters.

The flow diagrams for all functional groups except propellant distribution and
thrusters can be applied to all vehicles. The functional groups are schematically
identical for the fuel and the oxidizer, so that the functional flow diagram pre-
sented is applicable to both. The functional flow diagrams for propellant distri-
bution and thrusters were simplified by considering the success and failures of
functional groups of valves and thrusters rather than individual components. The
booster APS is schematically the same as the orbiter APS except that the booster
APS does not incorporate propulsive venting of hot gas from the conditioning assem-
blies and since propulsive venting is not requivred for successful operation of the
orbiter it was excluded from the flow diagrams.

Component failure modes shown in the diagrams are generally "GO, NO-GO" type
failure modes. No attempt was made to include degrees of failure in the flow dia-
grams, For example, the "FAIL OPEN" failure mode for valves included all valve
positions from failure in the full open position down to the lowest leakage rate
affecting subsystem operation.

A functional group schematic is presented with each flow diagram to facilitate
interpretation. The component identification numbers shown on the schematic were
arbitrarily assigned for this study to quickly identify the component being dis-
cussed without a lengthy component descriptiomn.

The failure mode and effect analysis (FMEA) presented"in Figure H-3 examines

the depth of redundancy provided for each component failure mode critical to a
' H=-5
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HIGH PRESSURE APS REPORT MDC E0298
SUBTASK B 12 FEBRUARY 1971

successful mission and/or vehicle and crew safety. It also provides a preliminary
review of the instrumentation required to detect inflight malfunctions by indicating
those parameters which must be monitored to aid in failure detection and isolation.
No attempt is made to design and instrument the subsystem or to define the depth of

redundancy required for parameter sensing devices.

The FMEA is limited to the same component failure modes shown in the functional
flow diagrams. In order to simplify the FMEA for a triple-redundant system, the
analysis was further limited to those failure modes of primary coﬁponents which
affect normal subsystem operation, Primary components are defined as those appear-
ing in the primary (top) path of the functional flow diagrams. The remaining com-

ponents are discussed in the redundancy evaluation.
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HIGH PRESSURE APS REPORT MDC E0298
SUBTASK B 12 FEBRUARY 1971

H-4, RELTIABILITY EVALUATION

To provide some measure of the potential numerical reliability of the high
pressure APS, estimates of operational and fail-safe probabilities of success have
been derived. The results of these estimates are presented in Figures H-4 and
H-4a, Figure H-4a shows the probability of a zero failure mission and indicates
that on an average, the necessity for component replacement (maintenance action)
can be expected every five orbiter missions and every thirty booster missions due
to inflight component operational malfunctions. The reliability estimates were
basically derived by applying the component failure rates and duty cycles listed
in Figures H-5 and H-6 to the subsystem functional flow diagrams. In some
instances, approximation techniques were used to compute the estimates for redun-
dant and complex component groups. In view of the preliminary nature of component
and subassembly design, the accuracy of these approximations is well within the
accuracy of the failure rates used in the analysis. Standby redundancy was con-
sidered only for the conditioner assemblies. It is probable that some thrusters
will be held in standby; however, for this analysis, the thrust cycle requirements
for each thruster location point were assumed to be equally divided between all
thrusters at that location.

The failure rvates used in the analyses were selected after a review of avail-
ablehfailure rate lists. They are representative of the failure rates that can
be expected of these types of components. The percentage of the failure rate
assigned to each component failure mode was a judgement figure based on a review
of available failure data. Duty cycles shown for each component are for a 72 hour
mission timeline. Environmental and operational factors were not applied to these
duty cycles because components are in general designed for much more severe environ-

ments than those encountered in actual usage.

H-24

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY =~ EAST



¢Z-H

7-H TYNOIA

ASVI = ANVAINOD SOILINVYNOMALSY SYTHDNOA TIINNOGIOW

*TEAAIT TYVDILIYD ONTHOVHY OL ¥OT¥d QALIELAd d9 TIIM TINIVIZdWEL ¥IAO ¥0 SSTELSYAAO OL ANd HENTIVA

ATIONYLSAA V HSAVD QIN0) HOIHM SHAOW FYNTIVA ININOJWOD °*°°T ‘0°T O 1TvA0T SI ALITIEVITAY ONIHOLIMS ANV ONISNHS (%)

*0°T OL Tvadd ST ALITIGVITAY TVIALOMNEIS (€)

*INVOIAINOIS 34 ION TTIIM SININOAWOD SdV Y04 AIVY FINTIVA ONILVIZJO-NON HHI (Z7)

CHOVAVAT YHAONVHOXE IVAH ANV JANdOTENI 1JADXH NOIIVIAdO WALSAS TAVYDHA ION TTIM HOVIVAT TVNIHIXH ININOAWOO (T)

HIVWILSE STIHL NI dHATONI SNOILJWASSV

6666666° 966666° 9L166666° 090666° C6LE8666° 798.L66° WHLSASLINS
SYILSN¥HL
8666666670 8L6666°0 0€666666°0 9766670 9%6£8666°0 05T866°0 NV NOILAFI¥ISIQ INVITZd0dd
Nm - NOILVINOHY HYNSSHYd
66666666°0 666666°0 L6666666°0 1666660 L6666666°0 16666670 NV NOILVIAWADDV INVTITEdOdd
No - NOILVIADHY TYNSSHdd
6666666670 666666°0 L6666666°0 166666°0 L6666666°0 166666°0 ANV NOILVTAWADDV INVTTHdO¥d
666666660 766666°0 626666660 9.8666°0 62666666°0 9.8666°0 Nm — ONINOILIONOD INVITddO¥d
66666666°0 1666660 67666666°0 9.8666°0 626666660 9.8666°0 No =~ ONINOILIONOD INVTITdd0¥d
66666666°0 866666°0 L6666666°0 066666 "0 L6666666°0 0666660 NOLLVZTENSSHdd ANV HOVAO0LS qu
66666666°0 866666°0 L6666666°0 066666 "0 L6666666°0 0666660 NOILVZINNSSHAd ANV HDVIOLS NOA
H4VS 1IV4 TYNOILVIEdO d44VS TIvVdA TVNOLLVEddO H4VS TIVdA TVNOILVIAdO dN0¥D TYNOILILONAA
dHALS00d D ¥ILIFY0 g JILI9d0

(WO¥) FIVWIIST ALITIGVIINY

WALSASINS NOISTAdO¥d AUVITIXAV HYNSSHYd HOIH ALLLOHS

[Z61 AdVNYF3d ¢!
86¢03 JAW LJ0OdTY

gsvians
SdV J4NSSIdd HIIH



REPORT MDC E0298

HIGH PRESSURE APS

SUBTASK B

12 FEBRUARY 1971

HLVWILSE XLITIGVITHH

RILSISHNS NOISTINdOHd ZYVYITIXAV HYNSSHYd HOIH EILLOHS

"NOTLLONNJAIVH TVNOILVEEJO INANOJWOD IHOTTANI Ol 9Nd SNOISSIW HHLSO0H

(Of) XIMIHIL XYIAH NV SNOISSIW YHIIGHO ($) HATJ XMEAY CHIOHJYH Ed NVO (NOIIOV

M19L96°

06'e8*

818"

FONYNZINI VW) INEWHOVIJHY INENOJWOD ¥0d XIISSHOEN THI ‘TDVHEAV NV NO IVHL SHLVOIANT

£9€86 "

TL666®

TL666"
LEGH6”
LEG66”
69966°
69966°

8268°
£oT66°

€0T66°
89T86°
89186
20886
20886 "

LY688*

LoT66”

E0T66°
89186 "
89186°
20g86”
20886 °

SHALSNYHL
NV NOILAMTHMISIA INVITEdO¥d

CH - NOILVINO®H TUNSSHUJ
aNV NOILVINWNOOY INVTTHJOHd

C0 - NOTIVINO®Y MHNSSTUd
aNY NOTIVIAWNOOV INVTIHJOHd

Y - ONINOIIIGNOD INVTIZJONd
€0 - DNINOILIGNOD INVTIZJOUd
NOIIVZIHMASSTNd ANV EHVHOIS CHI

NOTLVZTHASSTHd ANV FOVHOIS 0T

415004

0 YHIICGYHO

g YLLTdH0

NOISSIW HuNTIVA OYHZ A0 ALITIHVHOEd

dI0dD TVNOILONAL

FIGURE H~4a

H-25a

MCDORNNELL DOUGLAS ASTRONAUTICS COMPANY =« EAST



ASVH = ANVAWOD STILNVNOHASY SVYITDNOA TITIANNOAIOIW

9c-H

G=H TuNOIA

SHUTTLE HIGH PRESSURE AUXILIARY PROPULSION SUBSYSTEM

COMPONENT DUTY CYCLES, FATLURE MODES, AND FATLURE RATES

ORBITERS AND BOOSTER

IDENTTFICATION
COMPONENT WUMBERS MISSION FATLURE FATLURE RATE SOURCE OF BASIC
TYPE (SCHEMATIC) DUTY CYCLE MODE x 10 FATLURE RATE
GAS GENERATOR 6G-1, GG-3 ORBITERS-0.66 HOUR FAILS TO FUNCTION 1000/HOUR AEROJET GENERLL (ORP, ESTIMATE
BOOSTER-0.10 HOUR
6G-5 ORBITERS-0.20 HOUR
{ REENTRY
BOOSTER-0,10 HOUR
HEAT EXCHANGER, HX-1, HX-3 ORBITERS0.66 HOUR PROPELIANT LEAKAGE 765/HOUR AEROJET GENERAL CORP. ESTIMATE
REBURE! BOOSTER-0.10 HOUR
HX-5 ORBITERS-~0,20 HOUR HOT GAS LEAKAGE 765/HOUR
BOOSTER-0,10 HOUR
PUMP, CRYOGENIC, TURBINE T/P-1, T/P-3 ORBITERS-~50 CYCLES, FAILS TO FUNCTION 60.0/CYCLE + CYCLIC - MDAC ESTIMATE
DRIVE 0.66 HOURS 5400/HOUR
BOOSTER-16 CYCLES LEAKS EXTERMALLY 40.0/CYCLE + HOURLY - AEROJET GENERAL CORP. ESTLATE
0.10 HOUR 3600/HOUR
T/P-5 ORBITERS~15 CYCLES
0.20 HOUR
REENTRY
BOOSTER-16 CYCLES
0.10 HOUR
REGULATOR, PRESSURE R-1, BR-2, R-5, R-7, R-9, R-11 ORBITERS~72.,0 HOURS FAILS OPEN 30/H0UR MDAC GEMINI EXPERIELCE
BOOSTER-0.1 HOUR FATLS CLOSED 11/HOUR
TANK ASSEMBLY, LIQUID 10p TANK, LHo TANK 72 HOURS FATLS TO MAINTAIN NEGIGIBLE
PROPELLANT TEMPERATURE CONTROL
THRUST CHAMBER, ALL THRUSTERS SEE TABLE H-1 FATLS TO FUNCTION 5.0/CYCLE MDAC ESTIMATE - AFTER DISCUSSION WITH
REGENERATIVE COOLED FAILS OFEN OR LEAKS 7.5/CYCLE ENGTHE VANUFACTURERS (AEROJET, BELL,
(INCLUDING VALVES) MARQUARDT, AYD ROCKETDYNE
VALVE, CHECK cv-1, CV-3 ORBITERS-50 CYCLES FAILS OPFEN 2.2/CYCIE AVCO RELIABILITY ENGIIEZRING DATA SERIES,
HEAT EXCHANGER EXHAUST BOOSTER-16 CYCLES FATLS CLOSED 0.1/CYCLE FAILURE RATES, APRIL 1952 (AVERAGE)
cv-5 ORBITERS-15 CYCLES
 REENTRY )
BOOSTER-16 CYCLES
VALVE, CHECK, GAS, Cv-19, €V-21, CV-25, CV-27 ORBITERS-50 CYCLES FATIS OPEN kb /ecYCLE (MAXTMU)
PROPELIANT, HIGH PRESSURE BOOSTER~16 CYCLES FAILS CLOSED 0.3 /CYCLE STANFORD RESPARCH INSTITUTE REPORT -
CONTRACT NAS 7-751 GIVES RATIO FOR GAS
CV-23, CV-29 ORBITERS-15 CYCLES ¥5 LIQUID CHECK VALVES
REENTRY
BOOSTER-16 CYCLES
VALVE, CHECX, LIQUID
PROPELIANT, HIGH PRESSURE CV-7, CV-9, CV-13, CV-15 ORBITEAS~50 CYCLES FAILS OPEN 13.2/CYCLE (MAXIMUM x 3)
BOOSTER-16 CYCLES FAILS CLOSED 1.2/CYC1IE
cv-11, CV-17 ORBITERS-15 CYCLES
( REENTRY)
BOOSTER-16 CYCLES
VALVE, THROTTLING, BI- V-1, V-4T ORBITERS~50 CYCLES FATLS OPEN ko/cycLE + HOURLY-LTV ELECTROSYSTEMS DATA CYCLIC -
PROPELTANT WITH VERNIER 0.66 HOUR 80/HOUR STANFORD RESEARCH INSTITUTE REPORT ~
THROTTLING OF OXIDIZER, BOOSTER-~16 CYCLES, FATLS CLOSED 10/CYCLE + CONTRACT VAS 7-751
MOTOR DRTVEN 0.10 HOUR 20/HOUR (ELECTROMECHANICAL ACTUATOR)
e e o o 5 — i L )
0.20 HOUR
BOOSTER-16 CYCLES,
0.10 HOUR
VALVE 5/0, MOTOR DRIVEN OR v-33, V=37 ORBTTERS-50 CYCLES, FATLS OPEN 16/CYCLE NASA DATA =~ SATURN
PNEUMATIC ACTUATION BOOSTER-~16 CYCLES FAILS CLOSED 3.3/CYCLE (SHUTOFF VALVES)
TSOLATION
V-39 ORBITERS~-15 CYCLES
{REENTRY)
BOOSTER~16 CYCLES
V-5, V-35, AND ALL THRUSTER 1 CYCLE
GROUP ISOLATION VALVES (AS REQUIRED)
VALVE, 5/0, PNEUMATIC V-1, V-3, V-1T, V-19, v-21 1 CYCLE EACH FATLS OPEN 510/CYCLE FARADA -~ SATURN
ACTUATION, FILL AND VENT FATLS CLOSED 100/CYCLE
VALVE, SOLENOID ACTUATED, V-7, V=9, V=11, V-13, V-15 1 CYCLE FATLS OPEN 8/cycre THIOKOL CHEMICAL CORP.
HELTUM CONTROL v-23, V-85 (AS REQUIRED) FATLS CLOSED 0.77/CYCLE (SURVEYOR)
VALVE, SOLENOID ACTUATED V-5, V51 ORBITERS-50 CYCLES
PROPELLANT CONTROL BOOSTER-16 CYCLES FAILS OFEN 5.8/CYCLE NASA DATA - SATURN
FAILS CLOSED .56/CYCLE
v-57 ORBITERS-15 CYCLES
(REENTRY)
BOOSTER~16 CYCLES
v-59, vV-61, V-63, V-65, V-67 1 CYCLE
v-69, V-15, V-T7, V-79, V-81, (AS REQUIRED)
v-83, V-89, AND THRUSTER ISOLATION
VALVES
V-85, v-87 ORBITER-3 CYCLES
BOOSTER~1 CYCLE
(A8 REQUIRED)
VALVE, RELTEF PRESSURE RV-1, RV-3, RV~5, RV-T 1 CYCLE FATIS OFEN 5.3/CYCLE NASA TATA ~ SATURN
(AS REQUIRED) FATLS CLOSED 1.5/CYCLE
(BURST DISK)
RV-1, RV-3, RV-~5, RV-T FATLS -OPEN 60/UNTT STANFORD RESEARCH INSTITUTE
FATLS CLOSED ho/untT CONTRACT NAS 7-T51
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DUTY CYCLE
VEHICLE THRUSTER FACH THRUSTER

ORBITER B PITCH AND ROLL 500 CYCLES
YAW 650 CYCLES

=X 10 CYCLES

+X 25 CYCLES

ORBITER C FWD - PITCH 295 CYCLES
FWD + PITCH 285 CYCLES

AFT - PITCH, + ROLL 600 CYCLES

AFT + PITCH, + ROLL 4,50 CYCLES

FWD + YAW 335 CYCLES

AFT + YAW 220 CYCLES

4X 25 CYCLES

X 10 CYCLES

BOOSTER PITCH AND ROLL 100 CYCLES
YAW 4O CYCLES

HIGH PRESSURE APS

AVERAGE THRUSTER DUTY CYCLE/MISSION

FIGURE H-6
B-27
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H-5. RESULTS

The ability of the APS to meet the one failure operational, failure safe re-
quirements are presented below. Included is the APS operation description after
component failure, the numerical reliability of the APS, and the malfunction
detection methods.

The following assumptions were used in the evaluation and must be considered
when comparing the estimated reliability of this subsystem baseline to the esti-
mated reliability of another subsystem,

(1) component external leakage will not degrade subsystem operation or

safety and, therefore, is not included in this estimate

(2) failure'sensing and switching reliability is equal to 1.0

(3) structural reliability of tanks, lines, static seals, etc., is equal

to 1.0

(4) the non-operating failure rate for APS components will not be significant.
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He6. "FAIL-OP, FAIL-SAFE" REDUNDANCY

The foregoing analyses indicate that the baseline APS design presented in this
report will meet the redundancy requirements with component external leakage and
structural failure excluded. This is dependent, however, upon integration with an
instrumentation subsystem and guidance and control subsystem capable of using the
component redundancy incorporated in the baseline.

One area of concern is the Orbiter B pitch and yaw thrusters. A preliminary
analysis indicates that failure of selected pairs of pitch and roll thrusters could
create undesirable control moments during reentry. These probably can be tolerated;
however, an in~depth subsystem control analysis is required to ensure that the
present configuration will perform adequately. A simplified solution to this poten-—
tial problem is to add an additional four thrusters at the pitch-roll location

either in the forward or aft vehicle positions.
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H«7. SUBSYSTEM RELIABILITY

The reliability estimates presented in Figure H-4 indicate that the baseline
design offers high potential reliability for both orbiter and booster application.
Attaining these high reliabilities is dependent upon sensing and switching capa-
bility which can detect and isolate failures, especially those failures which could
cause overstress and/or over-temperature conditions leading to structural failure of
components. These critical areas are discussed below.

The relatively low fail-safe reliability of Orbiter B is due to the potential
control problem associated with the pitch-roll thrusters which was charged against

the fail~safe reliability.
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H-8. MALFUNCTION DETECTION

The critical malfunction monitoring locations in the APS are in the areas where
a malfunction could cause a structural failure due to overstress and/or over- temp-
erature. The gas generators, turbopumps, reburn heat exchangers, and thrusters are
critical areas.

H~8.1 Gas Generators — The critical conditions in the gas génerators are over—

temperature during combustion due to improper mixture ratio caused by variations in
inlet pressure and/or temperature or by oxygen leakage into the chamber prior to
ignition. The throttling capability of the vernier gas generator propellant valves
provides a degree of control against improper mixture ratio. A feedback control
which monitors temperature and provides a vernief control to the oxygen valve will
further protect against normal variations in propellant pressures. Oxygen leakage
into the gas generator prior to commanded initiation could result in an excessively
hot start. Backup shut-off valves can be provided to prevent oxygen leakage

since it may be more advantageous to assure that leakage will not occur than to
require a detection method,

This backup oxygen isolation valve can also be used to prevent flow to the
reburn heat exchanger and provide a backup shut-off capability for this component.

H-8.2 Turbopumps — Turbopump overspeed is the critical condition for this
component. The speed and speed rise rate will be monitored and used to control
the gas generator and pump suction valves. Other turbopump~malfunctions will be
evidenced by subsystem performance loss (primarily lower pump discharge pressure
and/or flow) and are not critical malfunctions.

H-8.3 Reburn Heat Exchangers - The critical condition for the heat exchanger
is over~temperature due to an oxygen-rich mixture ratio. This can be caused by oxy-
gen being present in the heat exchanger at ignition due to valve leakage during non-
use periods, or, in the case of oxygen, heat exchanger internal leakage from the
propellant coils anytime. Over-temperature sensors and feedback control to the oxy-
gen inlet valve will be provided for the reburn heat exchangers. This will prevent
over ~temperature during operation. Oxygen leakage during non-use periods can be
prevented with the same valves used to isolate the gas generator oxygen supply
during non-use periods. Minor amounts of 02 leakage may be tolerated since it will -
diffuse out the vent, and valve sequencing will delay addition to the turbine
exhaust gases until the flow is partially established. Temperature sensors in the
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heat exchanger will be used to shutdown and isolate the entire conditioner assembly

before the temperature reaches a critical level.

H-8.4 Thrust Chambers ~ Linked propellant thruster valves provide mixture

ratio and sequencing control for the thrusters. Possible fuel leakage during non-
use periods generates the only critical malfunction detection monitoring require-
ment. Minor leakage presents no problems because of diffusion out of the chamber
in orbit. Major amounts of leakage can be detected by monitoring pressure decay in

. the APS propellant distribution subassembly during non-use periods}
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H-9. STRUCTURAL REDUNDANCY

All reliability analyses assumed that all structural components were failure
free. Structure does not have a reliability of 1.0 as assumed; therefore, one
task of this study was to investigate ways of increasing subsystem reliability by
adding structural redundancy. Various methods and degrees of incorporating struc-
tural redundancy were investigated for the APS.

Structural redundancy already exists in the following areas as a result of
providing functional redundancy.

(1) conditioner assemblies - three completely independent conditiomer
assemblies are incorporated in each propellant loop. A structural
failure (nondestructive to surrounding equipment) within a conditioning
assembly can be isolated completely.

(2) propellant distribution - because provision has been incorporated to
provide isolation for each thruster individually, and also to further
isolate by groups, the subsystem is protected against structural fail-
ure in many lines and fittings as a result of protection against
thruster leakage.

If the accumulators were implemented as two pressure vessels instead of one with
equal volumes then redundancy could be achieved with little or no weight penalty.
However, both accumulators would be used continuously and failure sensing and
switching would be required. 1In order to alleviate this requirement and hold one
accumulator in reserve (as a spare), the weight penalty would be 679 and 321
pounds for Orbiter B hydrogen and oxygen, respectively. Another method of imple-
menting redundant accumulators would be to utilize small accumulators capable of
supplying only enough propellant to allow the conditioner assembly to start.

The implementation of additional lines to the thruster manifolds from the
pressure regulators downstream of the accumulators provides a significant degree
of redundancy. Also, redundant manifolds and valves which allow isolation and
switching requires approximately an additional 200 pounds of lines
and valves.

If the retrograde propellant were separated from the main propellant supply
and stored in a separate tank along with independent pressurization, the weight
penalty would be in the order of 100 1lbs, as shown in Figure H-7. The separate

propellant storage does not incur weight penalties in the tank, however, additional
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pressurization lines and regulators, tank supports, and nonusable propellant
account for the indicated weight penalty.

Providing redundant retrograde propellant does, however, incur a significant
weight penalty since additional propellant and assoclated tankage and pressuriza-
tion is required to provide this capability. The incurred penalty is above
10,000 pounds.

One single point structure is the line from the propellant tank to the condi-
tioner assembly. This line then splits to the 3 turbopump inlets. Adding redun-
dant line and valves for both hydrogen and oxygen incurs a weight penalty of
approximately 30 pounds.

One of the methods investigated to implement structural redundancy was to
utilize separated retrograde propellant, a small second accumulator, and connect
one of the triple redundant conditioner assemblies with these components. This
configuration is shown in Figure H-8. The operation of this configuration has
not been investigated in detail.
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